UNITED STATES

DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

ANALYSES OF NATIVE WATER, BOTTOM MATERIAL, ELUTRIATE SAMPLES, AND DREDGED MATERIAL FROM SELECTED SOUTHERN LOUISIANA WATERWAYS AND SELECTED AREAS IN THE GULF OF MEXICO, 1979-81

By Dee L. Lurry

Open-File Report 82-690

Prepared in cooperation with the U.S. ARMY CORPS OF ENGINEERS

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey P.O. Box 66492 Baton Rouge, LA 70896 Copies of this report can be purchased from:

Open-File Services Section U.S. Geological Survey Box 25425, Federal Center Lakewood, CO 80225

CONTENTS

	Page
Glossary	V 1 1 4 4 4 6 8
Part C: Data for proposed ocean-disposal areas	101
ILLUSTRATIONS	
[Plates are at back]	
Plate 1-10. Maps showing location of sampling site(s) 1. along the Upper Calcasieu River, Ia. 2. along the Lower Calcasieu River, Ia. 3. for New Orleans to Venice Hurricane Protection Project, Ia. 4. Mississippi River-Gulf Outlet, Ia. 5. Southwest Pass, Ia. 6. Barataria Bay Waterway, Gulf Section, Ia. 7. Eugene Island, Atchafalaya Bay area, Ia. 8. Calcasieu Ship Channel, Gulf Section, Ia. 9. Inner Harbor Navigation Canal and Mississippi River-Gulf Outlet, New Orleans area, Ia. 10. Gulf Intracoastal Waterway, Ia.	Page
Figure 1. Map showing location of sampling areas, 1979-81	3
TABLES	
1. Sampling areas, dates sampled, and types and number of samples collected for dredging studies 2. Sampling areas, dates sampled, and types and number of samples collected for elutriate and ocean-disposal studies	6 7
(Part A: Dredging data)	
3-4. Water-quality data: 3. Upper Calcasieu River4. Lower Calcasieu River	11 25

(Part B: Elutriate Data)

			Page
Table	5-12.	Water-quality data:	
		5. Mississippi River-Gulf Outlet	34
		6. Southwest Pass	37
		7. New Orleans to Venice Hurricane Protection	
		Project	40
		8. Barataria Bay at Grand Isle	58
		9. Inner Harbor Navigation Canal and	
		Mississippi River-Gulf Outlet	65
		10. Eugene Island, Atchafalaya Bay	83
		11. Gulf Intracoastal Waterway	86
		12. Calcasieu Ship Channel, Gulf Section	
	(1	Part C: Data For Proposed Ocean-Disposal Areas)	
	13-16.	Water-quality data:	
		13. Mississippi River-Gulf Outlet	102
		14. Southwest Pass	103
		15. Barataria Bay at Grand Isle	104
		16. Eugene Island, Atchafalaya Bay	105

GLOSSARY

<u>Particle size</u>.--is the diameter, in millimeters (mm), of bed material.

<u>Particle-size classification</u>.--used in this report agrees with recommendations made by the American Geophysical Union Subcommittee on Sediment Terminology.

The classification is as follows:

Classification	Size	e (mm)	Method of analysis
Clay	0.000	4- 0.004	Sedimentation.
Sand		062 - 2.0	Sedimentation. Sedimentation
band	•002	- 2.0	or sieve.
Gravel	2.0	-64.0	Sieve.

Percent finer by weight is the percentage, by weight, of the sample that is of lesser particle size than the indicated value.

<u>Insecticides</u> are substances or a mixture of substances intended to prevent, destroy, or repel insects. The technical names for insecticides determined in this report are:

Aldrin.-- 1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro-endo, exo-1,4:5,8-dimethanonaphthalene.

Chlordane.--1,2,4,5,6,7,8,8-octachloro-3a,4,7,7a-tetrahydro-4,7-methanoindan.

<u>DDD</u>.--(combination of ortho and para isomers)o,p'-<u>DDD</u>
1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)-ethane, p,p'-<u>DDD</u>
1,1-dichloro-2,2-bis(p-chlorophenyl)ethane.

<u>DDE</u>.--(combination of ortho and para isomers)o,p'-<u>DDE</u> 1,1-dichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)-ethylene, p,p'-<u>DDE</u> 1,1-dichloro-2-bis(p-chlorophenyl)ethylene.

<u>DDT</u>.--(combination of ortho and para isomers)o,p'-<u>DDT</u>
1,1,1-trichloro-2-(o-chlorophenyl)-2-(p-chlorophenyl)-ethane, p,p'-<u>DDT</u>
1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane.

<u>Diazinon</u>.--0,0-diethyl 0-2-isopropyl-4-methyl-6-pyrimidyl thiophosphate.

<u>Dieldrin.--1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-endo,exo-1,4:5,8-dimethanonaphthalene.</u>

<u>Endosulfan</u>.--1,4,5,6,7,7-hexachloro-5-norbornene-2,3-dimethanol cyclic sulfite.

Endrin.--1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-endo,endo-1,4:5,8-dimethanonaphthalene.

Ethion. -- 0, 0, 0', 0'-tetraethyl S, S'methylenediphosphorodithioate.

<u>Heptachlor</u>.--1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro-4,7-methanoindene.

Heptachlor epoxide.--1,4,5,6,7,8,8-heptachloro-2,3-epoxy-3a,4,7,7a-tetrahydro-4,7-methanoindan.

<u>Lindane</u>.--1,2,3,4,5,6-hexachlorocyclohexane, 99 percent or more of gamma-isomer.

Malathion.--S-(1,2-dicarbethoxyethyl) 0,0-dimethyldithiophosphate.

Methyl parathion. -- 0,0-dimethyl 0-p-nitrophenyl phosphorothioate.

Methyl trithion.--phosphorodithioic acid S-[[(4-chlorophenyl)
thio]-methyl] 0.0-dimethyl ester.

Methoxychlor.--l,l,l-trichloro-2,2-bis(p-methoxyphenyl)ethane.

Mirex.--1,la,2,2,3,3a,4,5,5,5a,5b,6-dodecachlorooctahydro-1,3,4-metheno-lH-cyclobuta[cd]pentalene.

Parathion. -- 0,0-diethyl 0-p-nitrophenyl phosphorothioate.

Perthane.--1,1'-(2,2-dichloroethylidene)bis[4-ethylbenzene].

<u>Toxaphene</u>.—chlorinated camphene containing 67-69 percent chlorine by weight.

Trithion.--phosphorodithioic acid S-[[(4-chlorophenyl)thio]
methyl] 0,0-diethyl ester.

<u>Herbicides.</u>—are substances or a mixture of substances intended to control or destroy vegetation. The technical names for herbicides determined in this report are:

2,4-D.--(2,4-dichlorophenoxy) acetic acid.

2,4-DP.--2-(2,4-dichlorophenoxy) propionic acid.

2,4,5-T.--(2,4,5-trichlorophenoxy)acetic acid.

Silvex.--2-(2,4,5-trichlorophenoxy) propionic acid.

Polychlorinated biphenyls. -- (PCB's) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

<u>Polychlorinated napthalenes.--(PCN's)</u> are industrial chemicals that are mixtures of chlorinated napthalene compounds having various percentages of chlorine.

1

FACTORS FOR CONVERTING INCH-POUND UNITS TO INTERNATIONAL SYSTEM (SI) OF METRIC UNITS

	Multiply	<u>By</u>	To obtain
foot	(ft)	0.3048	meter (m)
inch	(in.)	25.4	millimeter (mm)
yard	(yd)	0.9144	meter (m)
mile	(mi)	1.609	kilometer (km)

To convert temperature in degree Celsius (°C) to degree Fahrenheit (°F), multiply by 9/5 and add 32.

ANALYSES OF NATIVE WATER, BOTTOM MATERIAL, ELUTRIATE SAMPLES, AND DREDGED MATERIAL FROM SELECTED SOUTHERN LOUISIANA WATERWAYS AND SELECTED AREAS IN THE GULF OF MEXICO, 1979-81

By Dee L. Lurry

ABSTRACT

The U.S. Geological Survey was requested by the U.S. Army Corps of Engineers, New Orleans District, to provide water-quality data to evaluate environmental effects of dredging activities in selected reaches of the Calcasieu River in southwestern Louisiana. were collected from the upper and lower Calcasieu River between January 1980 and March 1981. Thirty-three samples (22 native-water and ll effluent) were collected from ll dredging sites. In addition, a series of elutriate studies were conducted between July 1979 and July 1981 to determine water quality as a basis for assessing possible environmental effects of proposed dredging activities in the following areas: Grand Bayou and Martins Canal near Happy Jack, unnamed bayou near Port Sulphur, Grand Bayou and Pipeline Canal near Port Sulphur and Bayou des Plantins near Empire; Mississippi River-Gulf Outlet and Harbor Navigation Canal; Southwest Pass; Barataria Atchafalaya Bay at Eugene Island; Calcasieu Ship Channel. Samples of native water and samples of bottom material were collected from 22 different sites and elutriate (mixtures of native water and bottom samples were prepared and analyzed. material) Four proposed ocean-disposal sites were sampled for bottom material only. Samples were analyzed for selected chemical and biological constituents and physical properties.

INTRODUCTION

During the period July 1979 to September 1981 the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, New Orleans District, conducted three types of water-quality studies dealing with dredging activities in selected reaches of major navigable waterways of southern Louisiana. The types of studies were: (1) dredging, (2) elutriate, and (3) proposed ocean disposal. The Corps of Engineers selected all the sites and collected all the samples.

Dredging studies were concerned with the water quality at selected sites, along the upper and lower Calcasieu River, (fig. 1) in support of Section 404 of the Federal Water Pollution Control Act and Section 103 of the Marine Protection, Research, and Sanctuaries Act of 1972. The studies were conducted between January 1980 and March 1981. Results of these studies are presented in this report and provide a basis to assess potential environmental impacts associated with dredging operations and the disposal of dredged material. Samples were collected 100 yards upstream and downstream from the dredging site and from the discharge area.

The elutriate studies were initiated to collect data for use in assessing possible environmental effects of proposed dredging activities in selected reaches of Iouisiana waterways. The waterways and areas investigated were the Mississippi River-Gulf Outlet; Calcasieu Ship Channel; Barataria Bay; Southwest Pass; Eugene Island, Atchafalaya Bay; Gulf Intracoastal Waterway; Inner Harbor Navigation Canal, and miscellaneous canals and bayous in the New Orleans to Venice Hurricane Protection Project (fig. 1). Sampling at proposed ocean-disposal sites was done to determine the effects of dredging activities in selected areas. The sites were in Barataria Bay; near Eugene Island, Atchafalaya Bay; near the Mississippi River-Gulf Outlet; and near Southwest Pass. Four samples from proposed ocean-disposal sites were each collected within several yards of the collection site of the elutriate collected at that latitude and longitude.

Elutriate sites near Happy Jack, Port Sulphur, and Empire were sampled as part of the Hurricane Protection Project. The Hurricane Protection Project was authorized by Congress as a result of Public Law 71, 84th Congress, First Session, July 15, 1955. This law authorized and directed the Corps of Engineers to survey the eastern and southern seaboards of the United States for flood-damage potential due to hurricanes, with particular reference to areas where severe damage has occurred. The New Orleans to Venice portion of the project was authorized by the Flood Control Act of 1962.

The U.S. Geological Survey cooperated with the Corps of Engineers to investigate possible environmental impacts of constructing levees with locally dredged material. It was of interest to the Corps of Engineers to predict what effects these levees would have on the quality of the water with which they come into contact. The method used to analyze for the potential effects these levees would have on water quality was the "standard elutriate test."

The U.S. Geological Survey prepared and analyzed all of the samples in the aforementioned studies. The results are presented here without interpretation.

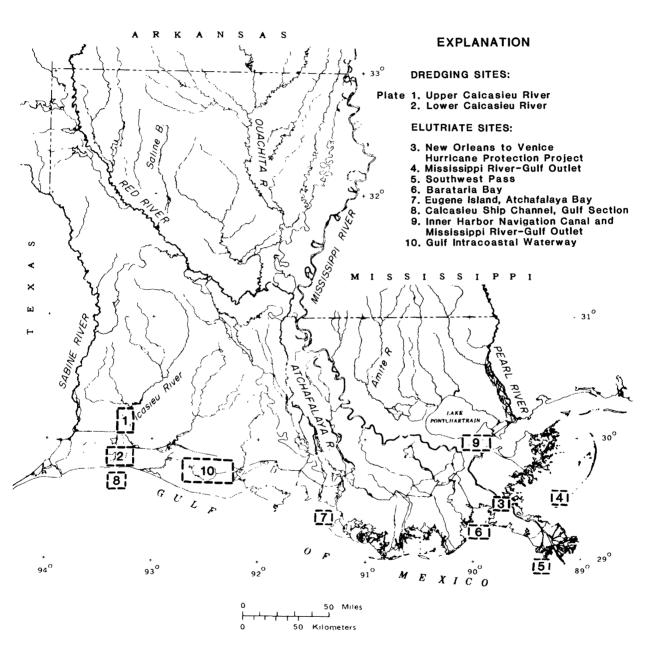


Figure 1.--Location of sampling areas, 1979-81.

MATERIALS AND METHODS

Dredging

Native-water samples were collected near the top of the water column and immediately chilled. Each water sample was prepared for analysis according to methods approved by the U.S. Geological Survey for appropriate processing and preservation. All samples for analysis for dissolved constituents were filtered through a prerinsed membrane filter (0.45-micrometer pore size).

Effluent samples were collected from hopper and hydraulic dredges. Dredge effluent was sampled at the point of discharge where hydraulic dredges were used and at the point of entry into the hopper (prior to dewatering) where hopper dredges were used. The effluent samples were allowed to settle for 30 minutes. After settling, a portion of the supernatant was decanted, treated as appropriate for the specific analysis, and stored at 4.0°C until analyzed. The remainder of the sample was centrifuged and filtered through a prerinsed 0.45-micrometer membrane filter. The filtrate was then treated and analyzed for selected dissolved constituents.

Elutriate

An elutriate, as defined by the U.S. Environmental Protection Agency (1975, p. 41295) " * * * is the supernatant resulting from the vigorous 30-minute shaking of one part bottom sediment from the dredging site with four parts water (vol/vol) collected from the dredging site followed by one hour settling time and appropriate centrifugation and a 0.45-micron [0.45-micrometer membrane] filtration."

Native water and bottom-material samples were collected using methods developed by Keeley and Engler (1974). Water samples were collected from the upper, middle, and lower third of the water column; then composited and chilled prior to sample preparation. A portion of the composite sample was then filtered through a prerinsed 0.45-micrometer membrane filter and analyzed for selected dissolved constituents. The remainder of the unfiltered sample was refrigerated at 4.0°C and later analyzed for selected constituents or used in the preparation of the elutriate. Bottom-material samples were collected using one of four pieces of equipment: U.S.-BMH-60 bottom sampler, U.S.-BM-60 bottom sampler, Shipek grab, and a pipe dredge. All bottom samplers were Teflon coated to prevent metal contamination. samples were mixed by hand and a representative portion was analyzed for selected inorganics, pesticides, and physical properties. Particle-size analysis of bottom material was performed on three samples from the Barataria Bay Waterway elutriate site. (See table 6.) The remainder was stored at 4.0°C until needed for the elutriate test.

The use of brand names in this report is for identification purposes only and does not imply endorsement by the U.S. Geological Survey.

Bottom material and the corresponding native-water sample were mixed in a 1:4 volumetric ratio of bottom material to native water. This mixture was placed in a Hobart model D-300 mixer with a Hobart "B" beater at low speed for 30 minutes. (The stainless steel bowl and beater were modified by application of a nylon coating to prevent contamination of samples.) After shaking, the suspension was decanted, allowed to stand for 1 hour, centrifuged, and filtered through a 0.45-micrometer membrane filter. The filtrate (standard elutriate) was then treated and stored at 4.0°C prior to analysis.

The elutriate sampling for the sites in Barataria Bay at mile 0.8, at Grand Isle included one native sample and three elutriate samples. The elutriate samples for these sites were prepared as follows: Sample A was prepared from native water and bed material sampled at the site 900 yards west of Barataria Bay Waterway. Sample B was prepared from native water used in sample A and bed material sampled at the site 900 yards southwest of Barataria Bay Waterway. Sample C was prepared from native water used in sample A and bed material sampled at the site 500 yards southwest of Barataria Bay Waterway. (See table 8.)

Laboratory analyses were performed in accordance with the following guidelines:

- 1. Native-water and effluent samples were analyzed for nutrients (ammonia nitrogen and kjeldahl nitrogen), residues, cyanides, chemical oxygen demand, and dissolved metals using methods described by Skougtad and others (1979).
- 2. Native-water and effluent samples were analyzed for phenols, selected pesticides (insecticides and herbicides), and other organic compounds using methods outlined by Goerlitz and Brown (1972).
- 3. Native-water and effluent samples were analyzed for oil and grease using methods described in "Methods for Chemical Analysis of Water and Wastes" (U.S. Environmental Protection Agency, 1979).
- 4. Native-water and effluent samples were analyzed for settleable matter as outlined in "Standard Methods for the Examination of Water and Wastewater" (American Public Health Association and others, 1976).
- 5. Samples were analyzed for chlorophyll (a and b) in phytoplankton using methods described by Greeson (1979).
- 6. Bottom-material samples were analyzed for heavy metals, nutrients and other constituents as outlined by Skougstad and others (1979), and for oil and grease using methods described in "Methods for Chemical Analysis of Water and Wastes" (U.S. Environmental Protection Agency, 1979).

- 7. Bottom material samples were analyzed for selected insecticides using methods outlined by Goerlitz and Brown (1972).
- 8. Bottom-material samples were analyzed for particle size using methods outlined in "Engineering and Design, Laboratory Soils Testing" (U.S. Army Corps of Engineers, 1970).

RESULTS

Table 1 shows the type, number, and dates of samples collected in the two dredging areas. Table 2 shows the type, number, and dates of samples collected in the seven elutriate sampling areas and the four proposed ocean-disposal areas. Sampling sites were selected by the Corps of Engineers. Results of the analyses are presented in three sections. The data from the dredging studies (tables 3-4) are included in part A; the data from the elutriate studies (tables 5-12) are included in part B; the data from the studies of proposed ocean-disposal areas (tables 13-16) are included in part C.

The locations of sampling sites are shown on plates 1-10. Iatitude and longitude coordinates for each site appear in table headings (table 3-16) as the first 13 digits (the first six representing the latitude coordinate and the next seven representing the longitude coordinate) of a 15-digit identification number.

Table 1.--Sampling areas, dates sampled, and types and number of samples collected for dredging studies

Sampling area	Dates sam	pled	Number of sites	Up- stream	Down- stream	Efflu- ent	Remarks
Upper Calcasieu River	1-24-80, 3- 7-80, 5- 1-80, 7-22-80		7	7	7	7	See plate 1 and table 15.
Lower Calcasieu River	10- 2-80, 1 1-21-81,		4	4	4	4	See plate 2 and table 16.
Total			11		33		

Table 2.--Sampling areas, dates sampled, and types and number of samples collected for elutriate and ocean-disposal studies

Sampling area	Date	Number	Number of	Number of native samples	Number of elutriate	Number of bottom	Proposed ocean-
	sampred	or sites	Total	Dissolved	samples	samples	disposal
Grand Bayou and Martin Canal near Happy Jack, unnamed bayou near Port Sulphur, Grand Bayou and Pipeline Canal near Port Sulphur and Bayou des Plantins near Empire	7-17-79	9	9	9	9	9	1
Mississippi River-Gulf Outlet and Inner Har- bor Navigation Canal-	7-13-79	9	9	9	9	y	1
Mississippi River- Gulf Outlet	10-30-79	П	1	1	1	1	-
Southwest Pass	10-24-79	Н	~ -1	H	1	~	Г
Barataria Bay	10-18-79	٦	٦	H	H	П	Н
D	07-08-81	ч	~	П	က	П	1
Eugene Island, Atchafalaya Bay	10-25-79	1	Н	Н	1	H	П
Calcasieu Ship Channel, Gulf Section	10-18-79	1	Н	г	7	П	1
Gulf Intracoastal Waterway	07-08-81	4	4	4	4	4	1
Total		22	22	22	24	22	- 4

SELECTED REFERENCES

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 1976, Standard Methods for the examination of water and wastewater, 14th ed.: Washington, American Public Health Association, p. 95.
- Brightbill, D. B. and Treadway, J. B., Jr., 1980, Analyses of water, bank material, bottom material, and elutriate samples collected near Belzoni Mississippi (upper Yazoo Projects): Baton Rouge, La., U.S. Geological Survey Open-File Report 80-758, p. 3.
- Demas, C. R., 1976, Analyses of native water, bed material, and elutriate samples of major Louisiana waterways, 1975: Baton Rouge, La. U.S. Geological Survey Open-File Report 76-853, 304 p.
- Demas, C. R. and Higgins, P. C., 1977, Analyses of native water and dredged material from southern Louisiana waterways, 1975-76: Baton Rouge, La., U.S. Geological Survey Open-File Report 77-503, 180 p.
- Dupuy, A. J., and Couvillion, N. P., 1979, Analyses of native water, bottom material, and elutriate samples of southern Louisiana waterways, 1977-78: Baton Rouge, La., U.S. Geological Survey Open-File Report 79-1484, 414 p.
- Goerlitz, D. F., and Brown, Eugene, 1972, Methods for analysis of organic substances in water: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. A3, 40 p.
- Greeson, P. E., ed., 1979; A Supplement to-Methods for collection and analysis of aquatic biological and microbiological samples (U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chapter A4): Reston, Va., U.S. Geological Survey Open-File Report 79-1279, 92 p.
- Keeley, J. W., and Engler, R. M., 1974, Discussion of regulatory criteria for ocean disposal of dredged materials: Elutriate test rationale and implementation guidelines: U.S. Army Corps of Engineers, Waterways Experiment Station, Office of Dredged Material Research, Vicksburg, Miss., Miscellaneous Paper D-74-14.
- Leone, H. L., Jr., 1976, Analyses of water, core material and elutriate samples collected near New Orleans, Louisiana, (Lake Pontchartrain, Louisiana, and vicinity hurricane protection project): Baton Rouge, La., U.S. Geological Survey Open-File Report 76-758, 22 p.

- Skougstad, M. W., Fishman, M. J., Friedman, L. C., Erdmann, D. E. and Duncan, S. S., eds., 1979, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, book 5, chap. Al, 626 p.
- Stallworth, G. R., and Jordan, H. F., 1980, Analyses of water and dredged material from selected southern Louisiana waterways and selected areas in the Gulf of Mexico, 1976-78: Baton Rouge, La., U.S. Geological Survey Open-File Report 80-694, 141 p.
- Thibodeaux, B. J., Benedict, B. A., and Grimwood, Charles, 1979, Ocean dumping of dredged material—Gulf of Mexico, in Volume 2, Coastal Zone '78: American Society of Civil Engineers Proceedings, 1978 Conference, San Francisco, Calif. p. 1115-1116.
- U.S. Army Corps of Engineers, 1970, Engineering and design, laboratory soils testing: Engineer Manual EM 1110-2-1906, November 30, 1970, app. V, p. V1-V24.
- U.S. Environmental Protection Agency, 1975, Navigable waters: Discharge of dredged or fill material: Federal Register, September 5, 1975, v. 40, no. 173, pt. 230, p. 41292-41298.
- 1979, Methods for chemical analysis of water and wastes: Cincinnati, Ohio, U.S. Environmental Protection Agency, Office of Research and Development, Report EPA-600/4-79-020, 460 p.

HYDROLOGIC DATA

Part A: Dredging Data

(Tables 3-4)

TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 300530093193000 CALCASIEU RIVER AT MILE 23.0, NEAR HACKBERRY, LA

	COBALT	SETTLE- TUR- ABLE BID- MATTER ITY (ML/L/ (NIU) HR) 10 <1.0 5 <1.0	LEVEL) AS (MG/L) CAC	S NONCAR- S/L BONATE	CALCIUM S DIS- I SOLVED SO (MG/L (M AS CA) AS	AGNE- SIUM, SODIUM, DIS- DIS- DIS- DIVED SOLVED NG/L (MG/L S MG) AS NA) L00 8700 570 5900
	7.2 60	75 980		1800 4200		950 7800
POTAS - ALKA- SIUM, LINITY SULF DIS - FIELD DIS SOLVED (MG/L SOL (MG/L AS (MG DATE AS K) CACO3) AS S JUL, 1980	CHLO- R FATE RIDE, A S- DIS- D SOLVED	OOLIDS, SOLIDS, NON- MY 105 VOIA- DEG. C, SUS- PENDED PENDED (MG/L)	SOLIDS, NIT VOIA- GI TILE, NITH SUS- TO PENDED (MC (MG/L) AS	FRO- NITRO- EN, GEN, RATE NITRITE FAL TOTAL G/L (MG/L N) AS N)	NITRO- NI GEN, C AMMONIA ORC DIS- I SOLVED SO (MG/L (MG/L AS N) AS	ITRO- SEN, SENIC DIS- DIVED WG/L 5 N)
	16000 16000 1400 11000	9 0 4 0		.04 .10 .07 .05	.45 .67	1.4
	L500 14000	149 95	54	.84 .00	.22	1.0
ERABLE SOLVED (UG/L (UG/L	NITRO- PHOS- GEN, PHORUS TOTAL (MG/L (MG/L AS N) AS P) 1.7 .09 24 2.3 CHRO- MIUM, COPPES HEXA- TOTAL VALENT, RECOL DIS. ERABI (UG/L)	S, DIS- ARS L SOLVED TO L (MG/L (U) AS P) AS D .09 D .10 .04 R, L COPPER, IF L COPPER, IF L SOLVED SOL L (UG/L (U	ARSENIC DIS- TAL SOLVED G/L (UG/L AS) AS AS) 2 2 2 1 7 23 LEAD, ON, TOTAL IIS- LISS- LEAD, LEA	TOTAL LIU RECOV- DIS ERABLE SOL (UG/L (UG AS BE) AS 10 10 10 MAN NES LEAD, TOT DIS- SOLVED ERA (UG/L (UG	PECOV- MED ERABLE (/L (UG/L BE) AS CD) 10 0 10 1 10 0 IGA- IE, MANGA- NESE, AL NESE, SOLVED IS- BELE SOLVED IG/L (UG/L	(UG/L AS CD) 0 0 0 MERCURY TOTAL RECOV- FRABLE (UG/L
DATE AS CR) AS CR) JUL, 1980	AS CR) AS CU	U) AS CU) AS	FE) AS PB)	AS PB) AS	MN) AS MN)	AS HG)
22 30 30 22 20 20 22 30 20	-	16 12 44 30 4 1 2	190 6 110 7 4000 4	5	410 390 220 110 0000 8100	.0
MERCURY TOTAL DIS- RECOV- SOLVED ERABLE (UG/L (UG/L DATE AS HG) AS NI) JUL , 1980	NICKEL, SELE- DIS- NIUM, SOLVED TOTAL (UG/L (UG/L AS NI) AS SE	- NIUM, TO , DIS- RE L SOLVED EF L (UG/L (U	NC, VTAL ZINC, XXV- DIS- ABLE SOLVED IG/L (UG/L E ZN) AS ZN)	CARBON, ORGANIC CYAN TOTAL TOI (MG/L (MC AS C) AS	AL PHENOLS	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)
221 3	4	0 0	80 80	4.3	.00 5	_
221 4 220 2	2 2	0 0	110 110 50	8.3 13	.00 4 .00 4	

TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 300530093193000 CALCASIEU RIVER AT MILE 23.0, NEAR HACKBERRY, LA--CONTINUED

JUL 22.		PCB, TOTAL (UG/L)	(UG/1	AL LEN OT- POI AA- CHI IAL TOI (G) (UG/	A- PO ES, TOT Y- IN E OR. TOM AL TEI	SOT- MA- ALDI RIAL TOT (KG) (U	TO IN IN, TON TAL T	ORIN, OTAL BOT- 1 MA- ERIAL G/KG)	CHLOR- DANE, TOTAL (UG/L)	CHLO: DANE TOTA: IN BO TOM M TERL (UG/K	, L T- A- DDD AL TOTA G) (UG/	L TERI L) (UG/K	L T- IA- DDI IAL TOTI IG) (UG)	AL.	
22. 22.		.0			0		.000		.0	-		-		000	
JUL D	ATE , 1980	DDE, TOTAL IN BOT TOM MA TERIA (UG/KG	, - DD L TOT.	DI TO! IN F I, TOM AL TE! /L) (UG/	OT- DI MA- AZII ZIAL TO 'KG) (U	D: AZII TO: I- IN I NON, TOM FAL TEI G/L) (UG,	TAL BOT- I MA- EI RIAL TO /KG) (I	.0 DI- LORIN DTAL UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	- ENDO - SULFA L TOTA) (UG/	ENDO SULFA TOTA - IN BO N, TOM M L TERI L) (UG/K	N, L, T- IA- ENDRI AL TOTA G) (UG,	ENDR TOT IN B IN, TOM I AL TER /L) (UG/	AL OT- MA- IAL KG)	
22. 22.				.000 .000		.00 .00		.000			000 000		.000 .000		
22.				.000	.0	.02	.0	.000		_	000		.000	•0	
	JUL ,	ATE , 1980	THION, TOTAL (UG/L)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL (UG/L	CF TO7 E BC N	ATL.	INDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		
	22.		.00		.00		.0			.000		.00 .00			
	22.		.00	.0	•00				.0	.000	.0	.00	.0		
		ATE	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	TOT. IN BOTTOM MATL.		L Ti	THYL TRI- HION, I. IN DITIOM MATL. G/KG)	MIREX, TOTAL (UG/L)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		
	22.	, 1980 	.00		.00		.0	0		.00		.00			
	22. 22.		.00	.0	.00		.0			.00 .00	.0	.00	.0		
	D	ATE , 1980 	PER- THANE TOTAL (UG/L)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL	TOTAL TRI-	TI TO TO TO (U		2,4-D, TOTAL (UG/L) .00 .00	2, 4-DP TOTAL (UG/L) .00 .00	2,4,5-T TOTAL (UG/L) .00 .00	SILVEX, TOTAL (UG/L)		
DATE	TIME	-									RTICLE SI				
JL , 1980			ETER (M		.00 1.0	0.50	0.25	0.12	0.06	0.0	31 0.01	6 0.008		0.002	0.001
22	1024	% FIN	er by Wi	EIGHT			99.5	98.0	96.5	94.5	90. 5	85.5	75.0	66.0	62.0

. _

TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 300629093195400 CALCASIEU RIVER AT MILE 24.0, NEAR HOLLYWOOD, LA

DATE JUN , 1980 05UPSTRE 05DOWNST 05EFFLUE	CO: DU AN (UM AM REAM	FIC N- CT- CE	PH I	NUM- I OBALT :	TUR- BID- 1	ETTLE- ABLE MATTER ML/L/ HR) <1.0 <1.0 <1.0	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) 40 37	IN BOTT MA TERI (MG/	YAL I HAI YOM NES A- (MI YAL A	SS NONG G/L BONZ S (MG	SS, CALA CAR- DIS ATE SO: G/L (M CO3) AS	MAGNE- STUM, S- LIVED SOLVED G/L (MG/L CA) AS MG) 6.2 2.6 7.0 2.3 40 110
SODI DIS SOLV (MG DATE AS JUN , 1980 05 8	UM, S - D ED SO E/L (M	IUM, LI IS- F LVED (IG/L	IELD D MG/L S AS (LFATE R IS- D OLVED S MG/L (I SO4) A	HLO- R IDE, A IS- D DLVED	OLIDS, ESIDUE T 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLI VOI TII SUS PENI	DS, G A- AMM E, D S- SO DED (M G/L) AS	EN, GEN ONIA TO' IS- IN I LVED M G/L (MG	,NH4 G TAL ORG BOT D AT. SO /KG (M	TRO- NITRO- EN, GEN, AM- ANIC MONIA + IS- ORGANIC LIVED DIS. G/L (MG/L N) AS N) .74 1.5
	0	2.0 71	13 390	24	120 100	1 4 252	12 20	2	2	.76	 80	1.0 1.8 .00 13
	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC	ARSENI DIS- SOLVE (UG/I AS AS	TOM TOM TER UG	PAL LI OT- TO MA- RI DIAL EI S/G (U	ERYL- IUM, OTAL ECOV- RABLE UG/L S BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)
05 05 05	2430	.33	.04	1 1 26	1 1 9	Ł	 10	0 0 0	<1 <1 1	 1	1 1 0	1 1 0
DATE	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS-	CHRO- MIUM, RECOV. FM BOT- O TOM MA- TERIAL	CHRO- MIUM, HEXA- VALENI DIS	COPE TOTE F, REC	PER, PAL CO NOV- D NBLE S S/L (1	PPER, IS- OLVED UG/L S CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
JUN , 1980 05 05 05	, .10	(() 10				0 0 0	13 9 11	6 6 4	 46	250 230 40	9 5 8	2 3 0
DATE	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLI (UG/L AS MN)	MANGA- NESE, DIS- SOLVEI (UG/L	RECOV. FM BOT- TOM MA- TERIAL	ERABI	L MERO 7- DI LE SOI L (UC	CURY FM CS- TO CVED T G/L (RCURY ECOV. BOT- M MA- ERIAL UG/G S HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
JUN , 1980 05 05		130 90	4()		.1	.0		7 6	0 2		0
DATE	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIA (UG/G	ZINC, TOTAL RECOV- ERABIL L (UG/L	ZINC, - DIS- E SOLVEI (UG/L	ZINC, RECON FM BOT TOM MA TERIA (UG/O	V. I'- CARE A- ORGA AL TOT G (MC	ANIC CY FAL T S/L (.27 ANIDE OTAL MG/L S CN)	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN)	PHENOIS (UG/L)	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)
05 05 05	0 0 0	 	-) 10		1	L6 L6 19	.00 .00	 0	7 13 4	0 0 	 0

TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 300629093195400 CALCASIEU RIVER AT MILE 24.0, NEAR HOLLYWOOD, LA--CONTINUED

DATE JUN , 198	PCB, TOTAL (UG/L)	TOT IN B TOM I TER (UG/	AL LEN OT- POI MA- CHI LIAL TO	IA- PO IES, TO: X- IN I OR. TOM IAL TEI		AL TER	AL OT- MA- IAL	CHLOR- DANE, TOTAL (UG/L)	CHLC DANE TOTA IN BO TOM M TERI (UG/K	C, L MT~ MA~ DDI TAL TOTM	L TER	AL OT- MA- DD IAL TOT	AL
05	.3			0		000		.0	-		000		000
05	.2			.0		000		.0			000		000
05	.0	ı	17 .	.0	.0 .	000	.0	.0	•	.0 .0	000	.9 .	000
DATE	DDE, TOTAL IN BOI TOM MA TERLA	- DD L TOI	TOT IN I OT, TOM	OT- DO MA- AZII OT LAIS	DI AZIN TOT I- IN B NON, TOM I'AL TER G/L) (UG/	ON, AL OT- DI MA- ELD IAL TOT	- RIN	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO SULFA TOTA (UG/	IN, TOM!	AN, AL OT- MA-ENDR IAL TOT		AL OT- MA- IAL
JUN , 198 05			.000		.00		.000			.000		.000	
05		. <u>-</u>	.000		.01		.000			.000		.000	
05	•	.0	.000	.0	.04	.0	.003	.0		.000	.0	•000	.0
05	DATE 1 , 1980	THION, TOTAL (UG/L)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL (UG/L)		HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	MA (UG/	OR CIDE IN TOM LI TL. T (KG) (NDANE OTAL UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
	•••	.00	.0	.00		.000		.0	.000	.0	.00	.0	
	DATE 1980	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA-	METHYL TRI- THION, TOTAL (UG/L)	MET THI TOT. BOT	HYL CON, IN TOM M	IIREX, TOTAL (UG/L)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
05	· · ·	.00	- -	.00		.00			.00		.00		
	 	.00	.0	.00 .00		.00 .00		.0	.00 .00	.0	.00	.0	
ງເປ	DATE N , 1980	PER- THANE TOTAL (UG/L)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	THI TOI IN E TOM	RI- ION, FAL SOT- MA- RIAL T	2,4-D, TOTAL (UG/L)	2, 4-DP TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
	5 5	.00 .00		.0		.00 .00			.60 .14	.00	.00	.00	
	5	.00	.00		.0	.00		.0	.05	.00	.01	.00	
entre es							DOM		TAT 752	DMTCT 10 CT	ייוני		
TIM 1980		ETER (M	M) 2	.00 1.0	0 0.50	0.25	125.125	0.062		RTICLE SI 31 0.01		0.004	0.002

TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER
301148093171700 CALCASIEU RIVER AT MILE 31.4, NEAR HOLLYWOOD, LA

DATE MAY , 19	80	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
01UP	STREAM WNSTREAM	4720 4620 20600	5.8 5.9 7.0	20 20 10	5 3 15	<1.0 34 <1.0	130 920 93	 210000	460 450 2400	450 440 2300	38 37 160
DATE MAY , 1980	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)
01 01	89 88 490	790 790 4000	31 30 170	14 14 67	240 220 940	1400 1400 7300	27 24 284	21 17 68	6 7 216	.02 .02 .10	.02 .01 .02
DATE	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)
MAY , 1980 01 01	.04 .03 .12	4.7 2.6 1.4	2.8 1.4	 842	2.0 1.9 1.9	1.9 .80	6.7 4.5 3.3	4.7 2.2	6070	6.7 4.5 3.4	.14 .11 1.1
DATE	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RFCOV- ERABLE (UG/L AS CR)
	PHORUS, DIS- SOLVED (MG/L AS P)	TOTAL (UG/L	DIS- SOLVED (UG/L	TOTAL IN BOT- TOM MA- TERIAL (UG/G	LIUM, TOTAL RECOV- ERABLE (UG/L	LIUM, DIS- SOLVED (UG/L	LIUM, RECOV. FM BOT- TOM MA- TERIAL	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	RECOV. FM BOT- TOM MA- TERIAL (UG/G	MIUM, TOTAL RFCOV- ERABLE (UG/L
DATE MAY , 1980 01 01 01	PHORUS, DIS- SOLVED (MG/L AS P) .06 .02 .950 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	TOTAL (UG/L AS AS)	DIS- SOLVED (UG/L AS AS)	TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	LIUM, DIS- SOLVED (UG/L AS BE)	LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	MIUM, TOTAL RFCOV- ERABLE (UG/L AS CR) 20 10
DATE MAY , 1980 01 01	PHORUS, DIS- SOLVED (MG/L AS P) .06 .02 .950 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	TOTAL (UG/L AS AS) 1 1 3 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL	DIS- SOLVED (UG/L AS AS) 1 1 2 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L	TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 6 COPPER, TOTAL RECOV- ERABLE (UG/L	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) 0 10 10 COPPER, DIS- SOLVED (UG/L	LIUM, DIS- SOLVED (UG/L AS BE) 0 0 0 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G	LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 1 IRON, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS CD) 1 0 0 LEAD, TOTAL RECOV- ERABLE (UG/L	DIS- SOLWED (UG/L AS CD) 0 0 0 LEAD, DIS- SOLWED (UG/L AS PB)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 20 10 20 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L
DATE MAY , 1980 01 01 01 01 01 01	PHORUS, DIS- SOLVED (MG/L AS P) .06 .02 .950 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)) 0 0 10 MA NE SO	TOTAL (UG/L AS AS) 1 1 3 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G) 40 MANGA- NE SE, RE RIS- FM LIVED TOM G/L TE	DIS- SOLVED (UG/L AS AS) 1 1 2 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR) 0 0 0 NGA- SE, MER COV. TO BOT- REB MA- ERIAL (U	TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 6 COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 14 11 5 CURY TAL MER COV- IABLE SC G/L (UG/L (COPPER, DIS-SOLVED (UG/L AS CU) CCURY FM MEF RESCURY FM MIS-TOWN	LIUM, DIS- SOLVED (UG/L AS BE) COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) COURY COURY COV. NICE BOT- TOM BOT- BOT- BOT- BOT- BOT- BOT- BOT- BOT-	LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) IRON, DIS- SOLVED (UG/L AS FE) 260 230 50 CKEL, NIC	TOTAL RECOV- ERABLE (UG/L AS CD) 1 0 0 LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 6 NIC R CKEL, FM IS- TOTAL R CKEL, FM	DIS- SOLVED (UG/L AS CD) 0 0 0 LEAD, DIS- SOLVED (UG/L AS PB) 1 1 CKEL, ECOV. BOT- SI M MA- NI UG/G (UG/G (UG/G)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 30 SI ELE- NI IUM, I DTAL SC GG/L (UG/L	MIUM, TOTAL RFCOV- ERABLE (UG/L AS CR) 20 10 20 MANGA- NESE, TOTAL RFCOV- ERABLE (UG/L AS MN) 220 210

TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER
301148093171700 CALCASIEU RIVER AT MILE 31.4, NEAR HOLLYWOOD, LA--CONTINUED

	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN)			OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)	
01 01 01	 0	70 4 0 30	40 20 10	 57	22 20 7.9	.15 .13 .00	 1	62 29 0	2 2 	 1500	
PCB, TOTE DATE (UG/1 MAY , 1980 01	AL TER	AL LENI OT- POLY MA- CHIA IAL TOTA KG) (UG/	A- PC S, TOT C- IN B OR. TOM I	AL OT- MA- ALDR IAL TOT	-	AL OT- CHIA MA- DAN IAL TOT KG) (UG/	E, TOM I	E, AL OT- MA- DDI IAL TOTA KG) (UG,	AL TER	AL OT- MA- DDI MAL TOTI KG) (UG)	AL
01	.0		.0	 •0	.000	 .0	.0		.000		.000
DATE MAY , 198(DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI - ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL (UG/L)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, TOTAL (UG/L)	
01 01 01	 .0	.000 .000	 .0	.00 .00	 .0	.000 .000		.000 .000	 .0	.000 .000	
DATE MAY , 198	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION, TOTAL (UG/L)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL (UG/L)		HEPTA- CHLOR EPOXIDE TOTAL (UG/L)		LINDANE TOTAL (UG/L)		MALA- THION, TOTAL (UG/L)	
01 01	.0	.00	.0	.000		.000		.000 .000		.00 .00	
DATE MAY , 198	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOTAL (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL (UG/L)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN POT- TOM MA- TERIAL (UG/KG)	
01 01		.00	.00		.00		.00	 	.00	 	
01 DATE MAY , 198		PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX-APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	TRI - THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2,4-D, TOTAL (UG/L)	.0 2, 4-DP TOTAL (UG/L)	.00 2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UC/L)	
01 01	.00		.0 .0		.00 .00						
01	.00	.00	.0	.0	.00	.0	.00	.00	.00	.00	
NATE TIME NY, 1980 DIA 01 1020 % FI	METER (MI NER BY WI		00 1.00	0.50			.062 0.0	ARTICLE SI 031 0.01 0 90.0		0.004 66.5	0.002 0.0 51.0 41.5

TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER
301222093162300 CALCASIEU RIVER AT MILE 32.4, NEAR MAPLEWOOD, LA

DATE APR , 19: 03UP		SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS) 6.0	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	SETTLE- ABLE MATTER (ML/L/ HR) <1.0	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
03DO	WNSTREAM	56	5.5	70	40	<1.0	39	16000	8	3	1.8
03EF	FLOENT	5680	7.5	70	70	610	140	16000	470	260	31
DATE APR , 1980	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOIA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)
03 03 03	1.0 .9 96	6.8 6.3 1000	1.2 1.1 64	7 5 210	3.2 2.1 5.9	11 11 1900	21 25 47000	18 16 42500	3 9 4500	.05 .04 .00	.01 .02 .05
DATE APR , 1980	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)
03 03 03	.06 .06	.11 .13	.11 .13	32	1.2 .86 4.0	•57 •74 ~~	1.3 .99 13.0	.68 .87	 416	1.4 1.1 13	.03 .09 1.6
				ARSENIC	BERYL-		BERYL-			CADMIUM	CHRO-
DATE	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
	PHORUS, DIS- SOLVED (MG/L AS P)	TOTAL (UG/L	DIS- SOLVED (UG/L	TOTAL IN BOT- TOM MA- TERIAL (UG/G	LIUM, TOTAL RECOV- ERABLE (UG/L	LIUM, DIS- SOLVED (UG/L	LIUM, RECOV. FM BOT- TOM MA- TERIAL	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	RECOV. FM BOT- TOM MA- TERIAL (UG/G	MIUM, TOTAL RECOV- ERABLE (UG/L
DATE APR , 1980 03 03 03	PHORUS, DIS- SOLVED (MG/L AS P) .03 .03 1.6 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	TOTAL (UG/L AS AS)	DIS- SOLVED (UG/L AS AS)	TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	LIUM, DIS- SOLVED (UG/L AS BE) <1 <1	LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
DATE APR, 1980 03 03	PHORUS, DIS- SOLVED (MG/L AS P) .03 .03 1.6 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	TOTAL (UG/L AS AS) 1 11 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL	DIS- SOLVED (UG/L AS AS) 0 1 12 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L	TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 1 COPPER, TOTAL RECOV- ERABLE (UG/L	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) 0 0 0 COPPER, DIS- SOLVED (UG/L	LIUM, DIS- SOLVED (UG/L AS BE) <1 <1 0 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G	LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 0 IRON, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS CD) 1 0 1 LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS CD) 1 <1 0 LEAD, DIS- SOLVED (UG/L	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 0 0 10 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L
DATE APR, 1980 03 03 03 DATE APR, 19	PHORUS, DIS- SOLVED (MG/L AS P) .03 .03 1.6 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) 980 0 0 10 MANGA- NESE, DIS- SOLVED (UG/L AS MN)	TOTAL (UG/L AS AS) 1 11 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	DIS- SOLVED (UG/L AS AS) 0 1 12 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR) 0 0	TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 1	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) 0 0 0 COPPER, DIS- SOLVED (UG/L AS CU) 2 1	LIUM, DIS- SOLVED (UG/L AS BE) <1 <1 0 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) IRON, DIS- SOLVED (UG/L AS FE) 180 200	TOTAL RECOV- ERABLE (UG/L AS CD) 1 0 1 LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 5 3	DIS- SOLVED (UG/L AS CD) 1 <1 0 LEAD, DIS- SOLVED (UG/L AS PB) 0 0	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 0 0 10 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 70 70

TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER

301222093162300 CALCASIEU RIVER AT MILE 32.4, NEAR MAPLEWOOD, LA--CONTINUED

DATE APR , 1980	VANA- DIUM, DIS- SOLVED (UG/L AS V)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)		ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN)	PHENOLS (UG/L)	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)		
03 03 03	1.0	20 20 40	<3 7 30	 18	12 13 38	.00 .00		0 3 4	0 0 0	 1000		
PCB, TOTAL DATE (UG/L APR , 1980) (UG/14	AL LENE OT POLY NA CHLO IAL TOTA (G) (UG/I	A- PCN S, TOTA Y- IN BO OR. TOM M AL TERI L) (UG/K	L T- A- ALDR AL TOT G) (UG	AL TER	AL OT- CHI MA- DAI LIAL TO 'KG) (UG)	DAI TO: LOR- IN I NE, TOM TAL TEI /L) (UG,	TAL BOT- MA- DD RIAL TOT /KG) (UG	AL TER (L) (UG/	AL OT- MA- DD IAL TOT KG) (UG	AL. /L)	
03	0		.0	 	.000		.0		.000		.000	
DDE TOTA IN BO TOM M TERL DATE (UG/K	, L T- A- DDT AL TOTA	DD7 TOTA IN BO I, TOM M	AL OT- DI- MA- AZINC IAL TOTA	N, TOM L TEF	ON, PAL SOT- DI MA- ELL CIAL TOI	ELD TO I IN ORIN TOM TAL TE	MA- SUL RIAL TO		AN, AL OT- MA-ENDR LIAL TOT	ENDR TOT IN B IN, TOM	AL OT- MA- IAL	
APR , 1980 03		.000		00		.000		.000		.000		
		.000 .000		.00 .00	.0	.001	.0	.000 .001	.1	.000 .000	.0	
DATE APR, 1980 03 03	ETHION, TOTAL (UG/L) .00	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHIOR, TOTAL (UG/L) .000	CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L) .000		I LINDANE TOTAL (UG/L)	TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L) .00	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		
03 DATE APR , 1980	METH- OXY- CHLOR, TOTAL (UG/L)	.0 METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	.0 METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOTAL (UG/L)	METHYI TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	N MIREX,	MIREX, TOTAL IN BOT- TOM MA-	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		
03 03	.00		.00		.00		•00		.00 .00			
03	.00 .00	.0 PER- THANE IN	.00 .00	TOXA-PHENE, TOTAL IN BOT-	.00	TRI- THION, TOTAL IN BOT-	.00		.00	.0		
DATE APR , 1980 03	THANE TOTAL (UG/L)	BOTTOM MATERIL (UG/KG)	APHENE, TOTAL (UG/L)	TOM MA- TERIAL (UG/KG)	TRI- THION (UG/L)	TOM MA- TERIAI (UG/KG)	- 2,4-D, L TOTAL	TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)		
03 03	.00	.00	.0	 .0	.00		02	.00	.00	.00		
	•00	•00	•0	•0	•00							
	METER (MM MER BY WE			0.50 99.5		0.125 (ARTICLE S: 031 0.03 5 25.0	16 0.008	0.004 22.0	0.002 19.5	1

TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER
301259093153600 CALCASIEU RIVER AT MILE 33.5, NEAR WESTLAKE, LA.

DATE MAR , 190 07UP 07DO 07EF	STREAM WNSTREAM	SPE- CIFIC CON- DUCT- ANCE (UMHOS) 3100 2720 28900	PH (UNITS) 6.9 6.9 7.5	COLOR (PLAT- INUM- COBALIT UNITS) 40 40	TUR- BID- ITY (NIU) 20 20	SETTLE-ABLE MATTER (ML/L/HR) <1.0 <1.0 <50	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) 46 49 270	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) 7100	HARD-NESS (MG/L AS CACO3) 330 290 3800	HARD-NESS, NONCAR-BONATE (MG/L CACO3) 310 270 3600	CALCIUM DIS- SOLVED (MG/L AS CA) 25 22 240
DATE MAR , 1980	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)
07 07 07	65 57 770	500 420 5700	22 19 230	18 15 163	150 130 1500	910 750 10000	19 23 13500	8 12 12200	11 11 1350	.11 .11 .05	.01 .02 .01
DATE	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)
MAR , 1980 07 07	.12 .13 .06	.30 .34 5.0	.30 .28 5.0	 -0	.70 1.1 1.5	.80 .92	1.0 1.4 6.5	1.1 1.2	 2520	1.1 1.5 6.6	.03 .04 .08
	PHOS-		ADCENIT <i>C</i>	ARSENIC TOTAL	BERYL- LIUM, TOTAL	BERYL-	BERYL- LIUM, RECOV.	CADMIUM TOTAL	CADMIUM	CADMIUM RECOV. FM BOT-	CHRO- MIUM, TOTAL
DATE	PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	IN BOT- TOM MA- TERIAL (UG/G AS AS)	RECOV- ERABLE (UG/L AS BE)	DIS- SOLVED (UG/L AS BE)	FM BOT- TOM MA- TERIAL (UG/G)	RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	TOM MA- TERIAL (UG/G AS CD)	RECOV- ERABLE (UG/L AS CR)
	DIS- SOLVED (MG/L AS P)	TOTAL (UG/L	DIS- SOLVED (UG/L	TOM MA- TERIAL (UG/G	RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	FM BOT- TOM MA- TERIAL	RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TERIAL (UG/G	ERABLE (UG/L
DATE MAR , 1980 07 07 07	DIS- SOLVED (MG/L AS P) .02 .02 .08 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	TOTAL (UG/L AS AS)	DIS- SOLVED (UG/L AS AS)	TOM MA- TERIAL (UG/G AS AS)	RECOV- ERABLE (UG/L AS BE) 0 0	DIS- SOLVED (UG/L AS BE)	FM BOT- TOM MA- TERIAL (UG/G)	RECOV- ERABLE (UG/L AS CD) 0 0	DIS- SOLVED (UG/L AS CD)	TERIAL (UG/G AS CD) 0	ERABLE (UG/L AS CR) 10 0
DATE MAR , 1980 07 07	DIS- SOLVED (MG/L AS P) .02 .02 .08 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	TOTAL (UG/L AS AS) 1 1 3 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL	DIS- SOLVED (UG/L AS AS) 1 1 3 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L	TOM MATERIAL (UG/G AS AS) COPPER, TOTAL RECOVERABLE (UG/L	RECOV- ERABLE (UG/L AS BE) 0 0 10 COPPER, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L AS BE) 0 0 10 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G	FM BOTTOM MATERIAL (UG/G) IRON, DIS- SOLVED (UG/L	RECOV- ERABLE (UG/L AS CD) 0 0 0 LEAD, TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L AS CD) 0 0 2 LEAD, DIS- SOLVED (UG/L	TERIAL (UG/G AS CD) 0 0 LEAD, RECOV. FM BOTTOM MATERIAL (UG/G	ERABLE (UG/L AS CR) 10 0 20 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L
DATE MAR , 1980 07 07 07 07 07	DIS- SOLVED (MG/L AS P) .02 .08 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)) 0 0 20 MA NE SC	TOTAL (UG/L AS AS) 1 1 3 CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 30 MA NGA- NESE, RE DIS- FM LIVED TOM	DIS-SOLVED (UG/L AS AS) 1 1 3 CHRO-MIUM, HEXA-VALENT, DIS. (UG/L AS CR) 0 1 0 NGA-SE, MERCOV. TO BOTH. REIMOND REIM REIM REIM REIM REIM REIM REIM REIM	TOM MA- TERIAL (UG/G AS AS) 2 COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 5 4 4 CURY TTAL MEI COV- IABLE SG/L (UG/L (UG/L)	RECOV- ERABLE (UG/L AS BE) COPPER, DIS- SOLVED (UG/L AS CU) 2 2 1 MEI RI RCURY FM DIS- TOO DIVED TI UG/L (U	DIS- SOLVED (UG/L AS BE) 0 0 10 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) 16 CCURY CCURY CCOV. NICE BOT- TOM MA- RECOV. BOT- BOT- BOT- BOT- BOT- BOT- BOT- BOT-	FM BOTTOM MATERIAL (UG/G)	RECOV- ERABLE (UG/L AS CD) 0 0 0 LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 2 4 3 NIC RI CKEL, FM LS- TOU LS- TO	DIS- SOLVED (UG/L AS CD) 0 0 2 LEAD, DIS- SOLVED (UG/L AS PB) 0 0 CKEL, ECOV. BOT- SI MA- NI MA- NI SERIAL TO	TERIAL (UG/G AS CD) O LEAD, RECOV. FM BOTTTOM MATERIAL (UG/G AS PB)	ERABLE (UG/L AS CR) 10 0 20 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 110 110

TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 301259093153600 CALCASIEU RIVER AT MILE 33.5, NEAR WESTLAKE, LA.--CONTINUED

07 20 20 20 8.5 .00 0 0 1 0 0 0 7 07 20 20 20 9.5 .00 1 0 0 0 0 0 0 7 07 0 20 20 57 8.0 .00 1 0 0 1 0 0 0 7 07 0 20 20 57 8.0 .00 0 1 0 0 0 0 3100 0	DATE MAR , 1980	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN)		OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)	
	07 07		20	20		9.5	.00		1	0		
07 900000000000000000 07 0 -2 .0 .0000000000000000 07 0 22 .0 .0 .0 .0 .000 .0 .0 .0 .0 .0 .0 .0 .	PCB, TOTI DATE (UG/)	PO TO IN I TOM AL TE	NAPI CB, THE TAL LEM BOT- POL MA- CHLI RIAL TOT	H- A- PCI ES, TOTA Y- IN BO DR. TOM M	N, AL OT- MA- ALDR IAL TOT	ALDR TOT IN B IN, TOM	IN, AL OT- CHL MA- DAN IAL TOT	CHIC DANE TOTA OR- IN BC E, TOM M AL TERI	OR- C, L OT- IA- DDI AL TOTA	DD TOT IN B O, TOM	D, AL OT- MA- DD IAL TOT	AL.
DDE_ DDT_	07 07	.0		.0		.000		.0		.000		.000
07000	TOT: IN B TOM I TER DATE (UG/)	AL OT- MA- D IAL TO	TOT IN B DT, TOM TAL TER	AL OT- DI MA- AZIN IAL TOT	AZIN TOT - IN E ON, TOM AL TER	ION, PAL BOT- DI MA- ELL RIAL TOT	ELDE TOI - IN E RIN TOM 'AL TEF	IIN, PAL POT- ENDO MA- SULF? PIAL TOTA	SULFA TOTA O- IN BO AN, TOM I AL TER	AN, AL OT- MA-ENDR IAL TOT	TOT IN B IN, TOM AL TER	AL OT- MA- IAL
HINDAY CHILOR CHILOR CHILOR CHILOR CHILOR TOTAL TOTAL	07 07		.000		.00		.000	,	.000		.000	
07		TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL	CHLOR, TOTAL	CHLOR, TOTAL IN BOT- TOM MA- TERIAL	CHLOR EPOXIDE TOTAL	CHLOR EPOXIDE TOT. IN BOTTOM MATL.	TOTAL	TOTAL IN BOT- TOM MA- TERIAL	THION,	THION, TOTAL IN BOT- TOM MA- TERIAL	
METH-	07 07	.00		.000		.000)	.000		.00		
07	DATE	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL	METHYL PARA- THION, TOT. IN BOTTOM MATL.	METHYL TRI- THION, TOTAL	METHYL TRI- THION, TOT. IN BOTTOM MATL.	MIREX, TOTAL	MIREX, TOTAL IN BOT- TOM MA- TERIAL	PARA- THION, TOTAL	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL	
TOXA- TRI- PER- PHENE, THION, THANE TOTAL TOTAL PER- IN TOX- IN BOT- TOTAL IN BOT- THANE BOTTOM APHENE, TOM MA- TRI- TOM MA- 2,4-D, 2,4-DP 2,4,5-T SILVEX, TOTAL MATERIL TOTAL TERIAL THION TERIAL TOTAL TOTAL TOTAL TOTAL DATE (UG/L) (UG/KG) (UG/L) (UG/KG) (UG/L) (UG/KG) (UG/L) (UG/L) MAR, 1980 07 0.000013 .00 .00 .00 070000008 .00 .00	07 07	.00)	.00		.00		.00		.00		
070000013 .00 .00 .00 .00 .00 .00 .00 .00	DATE	PER- THANE TOTAL (UG/L)	PER- THANE IN BOTTOM MATERIL	TOX- APHENE, TOTAL	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL	TOTAL TRI - THION	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL	2,4-D, TOTAL	2, 4-DP	2,4,5-T TOTAL	SILVEX, TOTAL	
	07 07	.00) <u></u> -	.0		.00		.08	.00	.00	.00	

DATE DIAMETER (MM) 2.00 1.00 0.50 0.25 0.125 0.062 0.031 0.016 0.008 0.004 0.002 0.001 1050 % FINER BY WEIGHT -- 99.9 99.8 98.0 97.0 93.5 87.0 79.0 69.0 56.0 40.0 32.0 MAR , :

TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER 301333093151700 CALCASIEU RIVER AT MILE 34.0, NEAR WESTLAKE, LA

DATE FEB , 19 06UP 06DO		SPE- CIFIC CON- DUCT- ANCE (UMHOS) 2350 2100	PH (UNITS) 6.7 6.9	COLOR (PLAT- INIM- COBALT UNITS)	TUR- BID- ITY (NTU) 60 35	SETTLE- ABLE MATTER (ML/L/ HR) <1.0 <1.0	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) 41 38	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3) 250 210	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 230 190	CALCIUM DIS- SOLVED (MG/L AS CA)
06EF	FLUENT	24500	7.9	30	40		120	100000	3100	2900	190
DATE FEB , 1980	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)
06 06 06	48 41 640	380 330 4800	15 13 1600	16 17 238	100 90 1000	700 590 9400	44 48 42	31 31 19	13 17 23	.07 .07 .12	.04 .04 .03
DATE FEB , 1980	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)
06 06	.11 .11 .15	.42 .45 6.7	.38 .40 6.7	 40	.88 .85 4.3	1.0 .90 1.7	1.3 1.3 11.0	1.4 1.3 8.4	 1990	1.4 1.4 11	.07 .07 .66
DATE	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
	PHORUS, DIS- SOLVED (MG/L AS P)	TOTAL (UG/L	DIŞ- SOLVED (UG/L	TOTAL IN BOT- TOM MA- TERIAL (UG/G	LIUM, TOTAL RECOV- ERABLE (UG/L	LIUM, DIS- SOLVED (UG/L	LIUM, RECOV. FM BOT- TOM MA- TERIAL	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	RECOV. FM BOT- TOM MA- TERIAL (UG/G	MIUM, TOTAL RECOV- ERABLE (UG/L
DATE FEB , 1980 06 06 06	PHORUS, DIS- SOLVED (MG/L AS P) .03 .02 .61 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	TOTAL (UG/L AS AS)	DIS- SOLVED (UG/L AS AS)	TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) 0	LIUM, DIS- SOLVED (UG/L AS BE)	LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	TOTAL RECOV- ERABLE (UG/L AS CD) 0 0	DIS- SOLVED (UG/L AS CD)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
DATE FEB , 1980 06 06	PHORUS, DIS- SOLVED (MG/L AS P) .03 .02 .61 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	TOTAL (UG/L AS AS) 1 1 4 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL	DIS- SOLVED (UG/L AS AS) 0 0 5 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L	TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 8 COPPER, TOTAL RECOV- ERABLE (UG/L	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) 0 0 0 COPPER, DIS- SOLVED (UG/L	LIUM, DIS- SOLVED (UG/L AS BE) 0 0 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 1 IRON, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS CD) 0 0 1 LEAD, TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L AS CD) 1 1 1 LEAD, DIS- SOLVED (UG/L AS PB)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G	MILM, TOTAL RECOV- ERABLE (UG/L AS CR) 10 10 20 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L
DATE FEB , 1980 06 06 DATE FEB , 1980 06 06	PHORUS, DIS- SOLVED (MG/L AS P) .03 .02 .61 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) .00 .00 .00 .00 .00 .00 .00 .00 .00 .	TOTAL (UG/L AS AS) 1 1 4 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G) 300 MANGA-NESE, REDIS-FM MIUS-FM MUVED TOM MIUNED TOM MIUS-FM MUVED TOM MIUNED TOM MIUN	DIS- SOLVED (UG/L AS AS) 0 0 5 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR) 0 0 0 NGA- SE, MER XXVV. TO BOT- BEDT- BEDT- BET- MA- ERIAL (U	TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 8 COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 0 0 0 CURY TAL MEI COV- IABLE SG/L (UG/L)	COPPER, DIS-SOLVED (UG/L AS CU) CCURY FM DIS-SOLVED (UG/L AS CU) CCURY FM DIS-SOLVED CUG/L AS CU)	LIUM, DIS- SOLVED (UG/L AS BE) 0 0 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) 23 RCURY ECOV. NIC BOT- TOM BOT- BOT- BOT- BOT- BOT- BOT- BOT- BOT-	LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) IRON, DIS- SOLVED (UG/L AS FE) 170 170 80 EXEL, DTAL NICE SCOV- RABLE SCOG/L (UG/L)	TOTAL RECOV- ERABLE (UG/L AS CD) 0 0 1 LFAD, TOTAL RECOV- ERABLE (UG/L AS PB) 3 2 6 NICE (UG/L FM EXEL, FM EXEL, FM EXEL, FM EXEL, EXE	DIS- SOLVED (UG/L AS CD) 1 1 1 1 LEAD, DIS- SOLVED (UG/L AS PB) 0 0 2 CKEL, ECOV. EOT- SI ECTIAL TUG/G (UG/G (UG	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 40 SEELE- NI TOTAL SCOK LECOV. SEELE- NI TOTAL SCOK LECOV	MILM, TOTAL RECOV- ERRALE (UG/L AS CR) 10 10 20 MANGA- NESE, TOTAL RECOV- ERRALE (UG/L AS MN) 110 110

TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER

301333093151700 CALCASIEU RIVER AT MILE 34.0, NEAR WESTLAKE, LA--CONTINUED

DATE FEB , 1	NIO TOT IN I TOM TE: (U)	LE- UM, FAL BOT- MA- RIAL G/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	SOLV (UG/	, FM - TC ED T L (CINC, ECOV. BOT- MMA- ERIAL (UG/G AS ZN)	CARBOI ORGAN TOTAL (MG/I AS C	IC CYA	NIDE TAL IG/L 5 CN)	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN)	PHENO (UG/	G LS	REASE, TOTAL	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)	
06 06	.500	 0	40 40 30)	40 40 30	 53	11 11 12		.00 .00			1 1 1	0 0 0	1000	
T	CB, OTAL G/L)	PCB TOTA IN BO TOM M TERI (UG/K	L LE T- PC IA- CI AL TC	OLY- I HLOR. I OTAL	PCN, TOTAL N BOT- OM MA- TERIAI UG/KG)	- ALDR	II, T AL	LDRIN, TOTAL N BOT- OM MA- TERIAL UG/KG)	CHIL DAN TOT (UG/	DAI TO' OR- IN I E, TOM AL TE	IOR- NE, TAL BOT- MA- RIAL /KG)	DDD, TOTAL (UG/L	TER	AL OT- MA- DD MAL TOT	AL
06 06 06	.0 .0		 57	.0 .0	 	-	.000 .000	.0		.0 .0 .0	.0	.0	000 000 000	.0	.000 .000
IN IC DATE (C FEB , 1980	DDE, TOTAL N BOT- IM MA- TERIAL IG/KG)	DDI TOTA (UG/	TO IN I, TO AL TI (L) (UC	ERIAL G/KG)	DI- ZINON TOTAL (UG/L)	TER) (UG/	ON, PAL OT- MA- LIAL (KG)	DI- ELDRIN TOTAL (UG/L)	TER (UG/	IN, TAL OT- EN MA- SUL IAL TO KG) (U	DO- 1 FAN, 1 TAL G/L) (ENDO- SULFAN TOTAL IN BOI TOM MA TERLA (UG/KO	V, C- A- ENDR AL TOTA G) (UG)	AL TER /L) (UG/	AL OT- MA- IAL KG)
06 06	.0		.000 .000 .000	.0	.00 .00	0	.0	.00 .00	0	.0	.000 .000	-		.000 .000 .000	.0
DATE	OT I) E	iion, Vial IG/L)	ETHION TOTAL IN BOT TOM MA TERIA (UG/KG	- HEP? - CHLC L TOTA	CA- II OR, T	HEPTA- CHLOR, TOTAL N BOT- OM MA- TERIAL UG/KG)	HEPT CHLO EPOXI TOTA (UG/	C A-EP OR TO DE B	EPTA- HLOR OXIDE I'. IN OTTOM MATL. G/KG)	LINDANE TOTAL (UG/L)	TER	AL)T- VA- TAL	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
FEB , 1 06 06	1980	.00 .00	-	- ,	.000 .000 .000	.0		000 000 000	 .0	.00 .00	00	 .0	.00 .00	.0	
DAT FEB ,) CI T(T) E ((TH- XY- HLOR, TAL JG/L)	METH- OXY- CHLOR TOT. I BOTTO MATL (UG/KG	METI N PARA M THIC	HYL A- T ON, AL	ETHYL PARA- THION, OT. IN BOTTOM MATL. UG/KG)	METH TRI THIC TOTA (UG/	HYL I :- TC ON, E	ETHYL TRI- HION, T. IN OTTOM MATL. G/KG)	MIREX, TOTAI (UG/L)	TER	AL OT- MA- IAL	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
06 06 06	-500	.00 .00		-	.00 .00 .00	 .0		.00 .00 .00	 .0	.00. 00.)	 .0	.00 .00	 .0	
DAT FEB,	T T () E	PER- HANE OTAL UG/L)	PER- THANE IN BOTTOM MATERI (UG/KG	TO I APHE IL TOT	K- I NE, I	TOXA- PHENE, TOTAL N BOT- OM MA- TERIAL UG/KG)	TOTA TRI THIC (UG,	T T AL IN T - TO	TRI- HION, OTAL BOT- M MA- ERIAL IG/KG)	2,4-D, TOTAL (UG/L)	, 2, 4 TOT	-DP	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
06 06 06	_,,00	.00 .00			.0 .0 .0	 -0		.00 .00 .00	.0	.03 .09	9	.00 .00	.00 .00	.00 .00	
TIME		-00)		1.00	0.50	0.25		M MOT	ATERIAL I	PARTICL		E		0.0

DATE FEB , 080 DIAMETER (MM) 2.00 1.00 0.50 0.25 0.125 0.062 0.031 0.016 0.008 0.004 0.002 0.001 1045 % FINER BY WEIGHT -- -- 99.0 99.0 96.0 92.5 85.5 75.5 66.0 49.5 39.0 31.0

TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER
301349093144700 CALCASIEU RIVER AT MILE 36.0, NEAR WESTLAKE, LA

DATE JAN , 19 24UP		SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS) 6.7	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	SETTLE- ABLE MATTER (ML/L/ HR) <1.0	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
24DO 24EF	WNSTREAM	1610 17800	6.8 7.6	80 60	50 15	< 1.0 	47 2000	55000	150 1800	130 1500	13 130
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)
JAN , 1980 24 24 24	24 28 350	220 240 3200	9.8 11 120	17 19 244	61 67 570	370 430 5900	32 78 47	28 56 21	4 22 26	.08 .07 .00	.08 .08 .04
DATE JAN , 1980	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)
24 24 24	.16 .15 .04	.16 .17 14.0	.06 .03 14.0	134	1.0 .72 5.0	.94 .60 .00	1.2 .89 19.0	1.0 .63 12	 2220	1.4 1.0 19	.05 .05 .21
DATE	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM PECCV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
DATE JAN , 1980 24 24	PHORUS, DIS- SOLVED (MG/L AS P)	TOTAL (UG/L	DIS- SOLVED (UG/L	TOTAL IN BOT- TOM MA- TERIAL (UG/G	LIUM, TOTAL RECOV- ERABLE (UG/L	LIUM, DIS- SOLVED (UG/L	LIUM, RECOV. FM BOT- TOM MA- TERIAL	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	PECOV. FM BOT- TOM MA- TERIAL (UG/G	MIUM, TOTAL RECOV- ERABLE (UG/L
JAN , 1980 24 24 24	PHORUS, DIS- SOLVED (MG/L AS P) .02 .01 .03 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	TOTAL (UG/L AS AS) 1 2	DIS- SOLVED (UG/L AS AS)	TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) 0 0	LIUM, DIS- SOLVED (UG/L AS BE)	LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	TOTAL RECOV- ERABLE (UG/L AS CD) 0 0	DIS- SOLVED (UG/L AS CD) <1 <1	PECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
JAN , 1980 24 24 24	PHORUS, DIS- SOLVED (MG/L AS P) .02 .01 .03 CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	TOTAL (UG/L AS AS) 1 2 9 CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL	DIS- SOLVED (UG/L AS AS) 1 1 8 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L	TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 7 COPPER, TOTAL RECOV- ERABLE (UG/L	LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) 0 0 0 COPPER, DIS- SOLVED (UG/L	LIUM, DIS- SOLVED (UG/L AS BE) <1 <1 0 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G	LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 1 IRON, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS CD) 0 0 0 LEAD, TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L AS CD) <1 <1 0 LEAD, DIS- SOLVED (UG/L	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 0 0 10 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L
DATE JAN, 1980 24 24 24 24 24 24	PHORUS, DIS- SOLVED (MG/L AS P) .02 .01 .03 CHRO- MIUM, DIS- SOLVED (UG/L AS CR) 0 0 10 MA NE	TOTAL (UG/L AS AS) 1 2 9 CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 10 MA NGA- NESE, RE DIS- FM LIVED TOM	DIS- SOLVED (UG/L AS AS) 1 1 8 CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR) 0 0 0 NGA- SE, MER COV. TO BOT- RE I MA- ERIAL (UM-	TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 7 COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 4 4 2 CURY TAL MER COV- INABLE INABL	COPPER, DIS- SOLVED (UG/L AS CU) COPPER, DIS- SOLVED (UG/L AS CU) MEI RU	LIUM, DIS- SOLVED (UG/L AS BE) <1 <1 0 COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) 15 CCURY ECOV. NIC BOT- TOM BOT- BOT- BOT- BOT- BOT- BOT- BOT- BOT-	LIUM, RECOV. FM BOTTOM MATERIAL (UG/G) IRON, DISSOLVED (UG/L AS FE) 200 210 70 CKEL, DTAL NIGHT NIG	TOTAL RECOV- ERABLE (UG/L AS CD) 0 0 0 LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 8 6 NIC RECOV- ERABLE (UG/L AS PB) 10 10 10 10 10 10 10 10 10 10 10 10 10	DIS- SOLVED (UG/L AS CD) <1 <1 0 LEAD, DIS- SOLVED (UG/L AS PB) 2 2 0 CKEL, ECOV. BOT- SI ETIAL TUG/G (UG/G (UG/G (UG/G (UG/G) (UG/G) (UG/G) (UG/G)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 10 SI ELE- NI IUM, III SI UTAL SC UG/L (UTAL SC UG/L (U	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 0 0 10 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 90 80

TABLE 3.--WATER-QUALITY DATA, UPPER CALCASIEU RIVER
301349093144700 CALCASIEU RIVER AT MILE 36.0, NEAR WESTLAKE, LA--CONTINUED

DATE JAN , 198	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	•		CARBON, ORGANIC TOTAL (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN)	PHENOLS (UG/L)	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)	
24		4 0 30	20 6		15 16	.00		6 1	1 0		
24	0	30	20	37	35	.00	0	2		1600	
PCF TOTI DATE (UG, JAN , 1980 24	TOI IN E , TOM 'AL TEF	OT- POLY MA- CHIC RIAL TOTY (KG) (UG/1	A- PCN S, TOTA Y- IN BO OR. TOM M AL TERI L) (UG/K	L T- A- ALDRI AL TOTA G) (UG/	L TER	AL OT- CHI MA- DAN IAL TOI	E, TOM AL TER	E, AL OT- MA- DDI IAL TOTE KG) (UG,	AL TER	AL OT- MA- DD IAL TOT KG) (UG	AL
24	.0		-		.000		.0		.000		.000
24	.0				.000	.0				1.5	.000
TO: IN I TOM TEI DATE (UG, JAN , 1980 24	MA- DI CIAL TOT /KG) (UC	DID: TOTH IN BO DT, TOM I TAL TER G/L) (UG/I	AL DT- DI- AA- AZINO IAL TOTA KG) (UG/	n, TOM M L TERI L) (UG/M	ON, AL OT- DI AA- ELD IAL TOT KG) (UG)	RIN TOM AL TEF /L) (UG/ .000	RIN, TAL BOT- END MA- SULE RIAL TOI YKG) (UG	AN, TOM : AL TER G/L) (UG/	AN, AL OT- MA- ENDR IAL TOT KG) (UG	AL TER (L) (UG/	AL OT- MA- LIAL (KG)
24 24	1.3	.000 .000		02 00	.0	.000 .000	.0	.000	.0	.000	.0
DATE JAN , 19		ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR, TOTAL (UG/L)	CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, TOTAL (UG/L)	THION, TOTAL IN BOT- TOM MA- TEPIAL (UG/KG)	
24 24	.00 .00		.000		.000		.000		.00		
24	.00	•0	.000	.0	.000		.000		.00	.0	
DATE JAN , 19	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)		MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
24	.00		.00		.00		.00		.00		
24 24	.00 .00		.00 .00	.0	.00	.0	.00 .00	.0	.00 .00	.0	
DATE JAN , 19	PER- THANE TOTAL (UG/L)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI - THION (UG/L)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2 ,4- D,				
24 24	.00		.0		•00		•37	.00	.00	.00	
24	.00 .00		.0 .0	.0	.00 .00	.0	.18		.01 .00	.00	
TIME						БОЛДІДИ М	ATERTAT. D	ARTICLE SI	TZE		
	AMETER (M	9 41) 2	00 1.00	0.50	0.25			031 0.03		0.004	0.002

TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER
294930093205400 CALCASIEU RIVER AT MILE 4.5, NEAR CAMERON, LA

DATE MAR , 199 12DO		SPE- CIFIC CON- DUCT- ANCE (UMHOS) 29900 29600	PH (UNITS) 7.8 7.8	COLOR (PLAT- INUM- COBALT UNITS) 5 15	TUR- BID- ITY (NIU) 15 10	SETTLE- ABLE MATTER (ML/L/ HR) <1.0 <1.0	LEVEL) (MG/L) 360	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)			CALCIUM DIS- SOLVED (MG/L AS CA) 230 230	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 720
12EF		34800	7.9	10	15	990	280	18000			270	860
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	GEN, NITRATE TOTAL (MG/L	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GFN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)
MAR , 1981 12	6200	200	74	1500	11000	32	27	9	.12	.01	.22	.28
12	6300	200	74	1500	11000	47		8			.18	.23
12	7500	210	367	1600	13000	46	34	12	2 .08	.05	1.1	1.40
DATE MAR , 1981	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)		NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVEI (MG/L AS P)	ARSENIC	SOLVED (UG/L	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)
12	1.3	1.2	1.5		1.3	5.9	.28	.22	1	. 1		10
12 12	1.2 17	 19	1.4 18	316	 19	 85	.39	.24 .11	1		 6	10 10
DAT MAR,	1981	YL- LIUM, REX - FM I VED TOM /L TEI BE) (UX	COV. TO BOT- RE MA- ER RIAL (U G/G) AS	ABLE SOI G/L (UC CD) AS	REMIUM FM IS- TOM IVED TE IVED (U CD) AS	COV. MI BOT- TO I MA- RE- IRIAL EF IG/G (U ICD) AS	OTAL MINICOV- DIS CABLE SO: IG/L (UX ICR) AS	RO- MI UM, RI S- FM LVED TOI G/L TI CR) (I	IUM, MI SCOV. HE BOT- VAI M MA- I ERIAL (U UG/G) AS	EXA- TO ENT, RED DIS. ER UG/L (U UG/CR) AS	G/L (UC CU) AS	S- LVED S/L CU)
12 12		10 10		0 0	0 1		30 30	20 20		0 0	10	15 4
12		10	0	0	1	.02	40	20	4	0	8	2
DAT MAR ,		OV. OT- IRO MA- DI IAL SOI /G (UK	ON, TO IS- RE LVED ER G/L (U	ABLE SOI G/L (UC	RE AD, FM IS- TOM EVED TE	XXXV. NE BOT- TO I MA- RE CRIAL EF IG/G (U	VTAL NES COV- DI CABLE SOI G/L (UK	NGA- NI SE, RI IS- FM LVED TO G/L TI	ECOV. TO BOT- RE M MA- EF ERIAL (U	OCOV- D RABLE SO NG/L (U	CURY FME IS- TOM LVED TEF G/L (UC	OV. OT- MA- LAL
12			100	4	0		100	50		.4	.4	
12		12	110	1 4	1 0	20	80 	30 3900	430	.4	.2	07
12		EL, AL NICI OV- DIS BLE SOI /L (U	RE KEL, FM S- TOM LVED TE G/L (U	KEL, COV. BOT- SEI MA- NIU RIAL TOY	SE- NI IM, I IML SO G/L (U	CLE- NICUM, TO DIS- IN DLVED TOM DG/L TE	ILE- IUM, DTAL ZII BOT- D I MA- SO RIAL (U	RI NC, FM IS- TO LVED T G/L (I	ERIAL TO UG/G (M	TO IN ANIDE TOM OTAL TER MG/L (U	.3 NIDE TAL BOT- MA- IAL PHEN G/G CN) (UK	.07 Ools G/L)
MAR , 12	TA8T	30	1		0	1		40		.01		0

TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER

294930093205400 CALCASIEU RIVER AT MILE 4.5, NEAR CAMERON, LA--CONTINUED

DATE MAR , 194	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL (UG/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	
12 12 12	0 0 	 0	<.10 <.10 <.10	 3	<.1 <.1 <.1	<1.0	<.001 <.001 <.001		<.1 <.1 .1	<1.0	<.001 <.001 <.001	
DATE MAR , 19	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL (UG/L)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
12		<.001 <.001		<.001 <.001		<.01 <.01		<.001 <.001		<.000 <.000		
12	.3	<.001	.1	<.001		.07	<.1	<.001		<.00		
T	TO IN DRIN, TOM DTAL TE	ORIN, PTAL BOT- MA- ETHI RIAL TOI KKG) (UC	IN I ON, TOM CAL TE	TAL BOT- HE MA- CE RIAL TO	CH TO EPTA- IN HLOR, TOM TTAL TE	BOT- CH MA- EPC RIAL TO	CH PTA- EPO LOR TOT XIDE BO TAL M	ATL. TO	TO IN DANE TOM TAL TE	MA- TRIAL TO	MALA- THIOI TOTA: ALA- IN BO' HION, TOM MI OTAL TERLI UG/L) (UG/K)	N, L r- A- AL
12	<.001 <.001	«	.01 .01		<.001 <.001		<.001 <.001		<.001 <.001		<.01	
DATE MAR , 19 12	<.01	METH- OXY- CHIOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA-THION, TOTAL (UG/L)	<.1 METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	<.001 METHYL TRI - THION, TOTAL (UG/L) <.01	METHYL TRI - THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL (UG/L) <.01	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA-THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE TOTAL (UG/L)	.1
12 12	<.01 <.01	<.1	<.01 <.01	<.1	<.01 <.01	<.1	<.01 <.01	<.1	<.01 <.01	<.1	<.01 <.01	
DATE	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX - APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2,4-D, TOTAL (UG/L)	2, 4-DP TOTAL (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	PHYTO- PLANK- TON CHROMO	
MAR , 19 12		<.1		<.01		<.01	<.01	<.01	<.01	1.62	.000	
12 12	<.10	<.1 <.1	<1.0	<.01 <.01	<.1	<.01	<.01	<.01 <.01	<.01 <.01	1.22	.000	
DATE TIME			2.00	1 00	0.50		OM MATERI			0.000	0.004 0.00	0 000
MAR , 1981 12 0940		TER (MM) BY WEIGHT	2.00	1.00	0.50 0.2 99.0		0.062 41.0	0.031 28.0	0.016 23.5		0.004 0.00 8.5 17.5	2 0.001 16.5

TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER 295129093204500 CALCASIEU RIVER AT MILE 6.8, NEAR CAMERON, LA

21D	981 PSTREAM OWNSTREAM FFLUENT	SPE- CIFIC CON- DUCT- ANCE (UMHOS) 34000 33800 39300	PH (UNITS) 7.6 7.7	COLOR (PLAT- INUM- COBALIT UNITS) 5 5 20	TUR- BID- ITY (NTU) 8.0 15.0 30	SETTLE-ABLE MATTER (ML/L/HR) <1.0 <1.0 1000	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) 410 310 1300	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) 52000	HARD- NESS (MG/L AS CACO3) 4100 5400 4900	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 4000 5300 4500	CALCIUM DIS- SOLVED (MG/L AS CA) 250 350 320	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 840 1100 990
DATE JAN , 198	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GFN, AMMONIA DIS- SOLVED (MG/L AS NH4)
21 21 21	7700 6700 8600	230 220 230	97 98 326	2000 1900 1900	13000 13000 15000	76 172000 102	45 15 7000 71	31 15000 31	.05 .04 .00	.01 .01 .01	.41 .35	.53 .45
DATE	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)
JAN , 198 21 21 21	.58 .49	1.3 1.2 20.0	.99 .84 	 1600	1.4 1.3 20	6.0 5.5 89	.12 .11 .07	.11 .04 .06	1 2 9	1 1 7	 10	10 10 10
DATE	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RFCOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RFCOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)
DATE JAN , 198 21 21	LIUM, DIS- SOLVED (UG/L AS BE)	LIUM, RECOV. FM BOT- TOM MA- TERIAL	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	RECOV. FM BOT- TOM MA- TERIAL (UG/G	MIUM, TOTAL RECOV- ERABLE (UG/L	MIUM, DIS- SOLVED (UG/L	MIUM, RECOV. FM BOT- TOM MA- TERIAL	MIUM, HEXA- VALENT, DIS. (UG/L	TOTAL RFCOV- ERABLE (UG/L	DIS- SOLVED (UG/L	RFCOV. FM BOT- TOM MA- TERIAL (UG/G
JAN , 198 21 21 21	LIUM, DIS- SOLVED (UG/L AS BE):1 10 10 10 1RON, DIS- SOLVED (UG/L AS FE)	LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	TOTAL RECOV- ERABLE (UG/L AS CD) 0 0	DIS- SOLVED (UG/L AS CD)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 50 40	MIUM, DIS- SOLVED (UG/L AS CR) 20 30	MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	TOTAL RFCOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	RFCOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)
JAN , 198 21 21 21	LIUM, DIS- SOLVED (UG/L AS BE):1 10 10 10 1RON, DIS- SOLVED (UG/L AS FE)	LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 0 LEAD, TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L AS CD) 0 0 0 LEAD, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L AS CD) 0 0 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) 0 MANGA- NESE, TOTAL RECOV- ERABLE (UG/L	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 50 40 70 MANGA- NESE, DIS- SOLVED (UG/L	MIUM, DIS- SOLVED (UG/L AS CR) 20 30 60 MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL	MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 9 MERCURY TOTAL RECOV- ERABLE (UG/L	MIUM, HEXA- VALENT, DIS. (UG/L AS CR) 0 0 0 MERCURY DIS- SOLVED (UG/L	TOTAL RFCOV- ERABLE (UG/L AS CU) 5 9 6 MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G	DIS- SOLVED (UG/L AS CU) 3 3 4 NICKEL, TOTAL RECOV- ERABLE (UG/L	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) 18 NICKEL, DIS- SOLVED (UG/L
DATE JAN , 198 21 21 21 21 21 21	ILIUM, DIS-SOLVED (UG/L AS BE) IRON, DIS-SOLVED (UG/L AS FE) IRON, DIS-SOLVED (UG/L AS FE)	LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 5 13 5 EL, XVV. XVV. XVV. XVV. XVI. XVV. XVI. XVI.	TOTAL RECOV- ERABLE (UG/L AS CD) 0 0 0 LEAD, DIS- SOLVED (UG/L AS PB) 2 2 0 SEI LE- NIT M, DIS- SOLVED (UG/L SOLVED (U	DIS- SOLVED (UG/L AS CD) 0 0 0 LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 20 SEL E- NIU M, TOT SS- IN E VED TOM	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD) MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 90 260 E- M, ZIN AL TOTI	MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) 50 40 70 MANGA- NESE, DIS- SOLVED (UG/L AS MN) 100 100 7300 CC, FAL ZIR COV- DISBLE SOI	MIUM, DIS- SOLVED (UG/L AS CR) 20 30 60 MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 210 REC VC, FM I	MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G) MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) .1 .7 CC, COV. EOT- CARE MA- ORGERIAL TOTAL	MIUM, HEXA- VALENT, DIS. (UG/L AS CR) 0 0 0 MERCURY DIS- SOLVED (UG/L AS HG) .1 .0 .7	TOTAL RFCOV- ERABLE (UG/L AS CU) 5 9 6 MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG) 07 CYAN TOT IN E SIDE TOM FAL TERIAL (UG/C IN E	DIS- SOLVED (UG/L AS CU) 3 3 4 NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) 4 6 4 HIDE AL OOT- MA- AL PHEN	RFCOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) 18 NICKEL, DIS- SOLVED (UG/L AS NI) 0 0 1

TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER
295129093204500 CALCASIEU RIVER AT MILE 6.8, NEAR CAMERON, LA--CONTINUED

DATE JAN , 198: 21 21	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L) 0 0	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG) 0		PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L) <.1 <.1	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL (UG/L) <.001 <.001 <.001	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR-DANE, TOTAL (UG/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <1.0	DDD, TOTAL (UG/L) <.001 <.001 <.001	
DATE JAN , 198.	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL (UG/L)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
21 21 21	 <.1	<.001 <.001 <.001	 <.1	<.001 <.001 <.001		<.01 <.01 <.10	 <.1	<.00 <.00 <.00	 <.1	<.001 <.001 <.001		
DATE (U JAN , 1981 21 21	TO IN IN TOM TAL TE G/L) (UG	<	IN I ON, TOM PAL TEI (/L) (UG,	TAL BOT- HE MA- CH RIAL TO /KG) (U	CH TO TO TTAL TE G/L) (UG <.001 <.001	BOT- CH MA- EPO RIAL TO /KG) (U	CH PTA- EPO LOR TOT XIDE BO TAL M G/L) (UG <.001 <.001	ATL. TO /KG) (U 	TO IN	M MA- THERIAL TO	MALA- THION, TOTAL LA- IN BOT- HION, TOM MA- TERIAN IG/I.) (UG/KG) <.01	
DATE JAN , 198 21 21	<.01 <.01	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA-THION, TOTAL (UG/L)	BOTTOM MATL. (UG/KG)	<.001 METHYL TRI- THION, TOTAL (UG/L) <.01 <.01	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL (UG/L) <.01 <.01	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA-THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE TOTAL (UG/L) <.01 <.01	
DATE JAN , 198 21 21 21	PER- THANE IN BOTTOM MATERIL (UG/KG) 11	TOX-APHENE, TOTAL (UG/L)	<.01 TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <1.0	<.1 TOTAL TRI- THION (UG/L) <.01 <.01 <.01	<.01 TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <.1	2,4-D, TOTAL (UG/L) .02 .00	<.01 2, 4-DP TOTAL (UG/L) .00 .00 <.01	2,4,5-T TOTAL (UG/L) .00 .00	<.01 SILVEX, TOTAL (UG/L) .00 .00 <.01	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L) 5.94 2.63	<.01 CHLOR-B PHYTO- PLANK- TON CHROMO FILIOROM (UG/L) .000 .000	
DATE TIME JAN , 1981 21 1030	DIAMETE % FINER	ER (MM) BY WEIGHT	2.00		0.50 0.2 9.9 99.0	5 0.125	OM MATERI 0.062 91.0	AL PARTIC 0.031 59.5	0.016		0.004 0.002 5.0 19.0	0.001 14.0

TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER
295825093200800 CALCASIEU RIVER AT MILE 14.75, NEAR HACKBERRY, LA

	980 PSTREAM OWNSTREA		IC - T- E	PH IN	UM- B BALT I ITS) (N	UR- A ID- MA IY (MI IU) H	DEN TLE- CI BLE IC TTER (I 'L/ LE	MAND, HEM- CAL E HIGH VEL) I	C.O.D. TOTAL IN OUTTOM MA- TERIAL MG/KG)	HARD-NESS (MG/L AS CACO3) 3200 3300	HARD- NFSS, NONCAR- BONATE (MG/L CACO3) 3100 3200	CALCIUM DIS- SOLVEI (MG/L AS CA) 230 230	DIS- D SOLVED (MG/L
	FFLUENT		100	7.3	30 10		00	280	41000	3900	3400	270	790
DATE NOV, 198	SODIUM, DIS- SOLVED (MG/L AS NA)	DI SOL (MG	UM, LIN S- FI VED (M /L A	ELD DI G/L SC S (M	FATE RI S- DI DLVED SO IG/L (M	LO- RES DE, AT S- DEG LVED SU G/L PEN	TIDUE NO. 105 VA. C. T. S. S. S. S. S. DED PE	OLA- ILE, US-	COLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVE (MG/L AS N)	GFN, A AMMONIA DIS- D SOLVED
06 06	6400 6100 6800	26 22 24	0	92 1	200 11	000 000 000	16 41 40	12 33 35	4 8 5		.02		9 .63
DATE NOV , 198	NITRO- GEN, ORGANIO DIS- SOLVEI (MG/L AS N)	GEN, C MONI ORGA D TOI	AM- GEN A + MON NIC ORG AL DI	I,AM- GEN IIA + + C ANIC TOI S. BOI IG/L (M	IN G MAT TO MG/KG (M	EN, G TAL TO G/L (M	SEN, PH DTAL T NG/L (HOS- I ORUS, OTAL MG/L S P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	AM MOT	BERYL- LIUM, DIS- L SOLVED (UG/L
06 06	1.0 •7:	1 1		1.3 1.2		2.2 1.8	9.8 8.0	.07 .08 .80	.04 .03 .08	1 1 25	1 1 12	. -	10
	L R FM TO T	ERYL- IUM, ECOV. BOT- M MA- ERIAL UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALEN DIS- (UG/I AS CI	COPP TOT REC ERA L (UG	AL COPE OV- DIS BLE SOI /L (UC	PER, FM S- TOM LVED TE	IMA- TRIAL S TG/G (RON, DIS- OLVED UG/L S FE)
06 06	•		1	0	 40	40 30			0	9 6	4 5		110 110
06		1	ő	ő		40	14		0	6	2		14000
	T R E (EAD, OTAL ECOV- RABLE UG/L S PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)		L MERC V- DI LE SOL L (UG	URY FM I S- TOM WED TEI JL (U	COV. NIC BOT- TO MA- RE RIAL EF G/G (U	COV- D RABLE S JG/L (CKEL, DIS- DOLVED (UG/L S NI)
06 06		2	5		100	50			.0	.0		7	3 4
Uh												7	
06		3 5	4 4	90	280 9200	220 6600	640		.0 .0	.0 .0	.09	6	3
06	NI R FM TO T (ATE A	3	4					ZINC RECO FM BO TOM M TERI (UG/	.0 , V. T- CARE A- ORGA AL TOI G (MC	.0 OON, NIC CYAI TAL TO	.09 CYA TO NIDE TO TAL TEI G/L (1	ANIDE DTAL BOT- MA- RIAL PE	
06	NI R FM TO I ATE A 1980	3 5 CKEL, ECOV. 1 BOT- M MA- ERIAL UG/G	4 SELE- NIUM, TOTAL (UG/L	90 SELE- NIUM, DIS- SOLVED (UG/L	9200 SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL	ZINC, TOTAL RECOV- ERABLE (UG/L	ZINC, DIS- SOLVEI (UG/L	ZINC RECO FM BO TOM M TERI (UG/ AS Z	.0 V. T- CARE A- ORGA AL TOI G (MC N) AS	.0 OON, NIC CYAI TAL TO	.09 CYA TO NIDE TO TAL TEI G/L (1	ANIDE DTAL BOT- MA- RIAL PE	3 HENOIS

TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER
295825093200800 CALCASIEU RIVER AT MILE 14.75, NEAR HACKBERRY, LA--CONTINUED

	DATE NOV, 198		OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, TOTAL (UG/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, TOTAL (UG/L)	
	06 06	0		.00		.0 .0		.000		.0 .0		.000	
	06		3500	<.1	3	<.1	<1.0	<.001		<.1	<1.0		
	DATE NOV , 198	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI - ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, TOTAL (UG/L)	TERIAL	
	06		.000		.00		.00		.000		.00		
	06 06	.3	.000 <.001	 <.1	.00. .00.>		.01 .06	 <.1	.001 :.001		.00 00.>		
	T	TO IN ORIN, TOM OTAL TE	ORIN, OTAL BOT- I MA- ETHI CRIAL TOI	IN I ON, TOM TEL TE	TAL BOT- H MA- C RIAL T	CH TC EPTA- IN HLOR, TOM OTAL TE	BOT- CH IMA- EPC ERIAL TO	CH PTA- EPO LOR TOT KIDE BO TAL M	ATL. TO	T IN IDANE TO TAL	M MA- I ERIAL I	MALA- THION TOTAL HION, TOM MA TOTAL TERLA (UG/L) (UG/KG	L
06. 06.		.000		.00		.000 .000		.000		.000			. -
06		<.001		:.01	<.1	<.001	<.1	<.001	<.1	<.001	<.1	<.01 <.	
	DATE NOV , 19 06 06	MEIH- CXY- CHIOR, TOTAL (UG/L) 80 .00 .00	MEIH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L) .00 .00	METHYL PARA-THION, TOT. IN BOTTOM MATL. (UG/KG)	THION, TOTAL (UG/L) .00	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) <-1	MIREX, TOTAL (UG/L) .00 .00	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA-THION, TOTAL (UG/L) .00 .00 <.01		PER- THANE TOTAL (UG/L)	
	DATE NOV , 19 06 06	PER- THANE IN BOTTOM MATERIL (UG/KG) 80	TOX-APHENE, TOTAL (UG/L) .0 .0 <.1	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <1.0	TOTAL TRI- THION (UG/L) .00		2,4-D, TOTAL (UG/L) .06 .04	2, 4-DP TOTAL (UG/L) .00 .00	2,4,5-T TOTAL (UG/L) .00 .00	SILVEX, TOTAL (UG/L) .00 .00	FILUORON (UG/L)	A CHLOR-B - PHYTO PLANK- TON CHROMO (UG/L) 0 .000	
DATE	TIME	;					BOTT	OM MATERI	AL PARTIC	LE SIZE			
NOV , 06	1980	DIAMETI	ER (MM) BY WEIGHT	2.00	1.00	0.50 0.3	25 0.125		0.031 90.5	0.016		0.004 0.002 54.5 55.0	0.001 46.5

TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER 295836093200700 CALCASIEU RIVER AT MILE 15.0, NEAR HACKBERRY, LA

DATE CCT , 198 02UPS 02EFF	STREAM INSTREAM	SPE- CIFIC CON- DUCT- ANCE (UMHOS) 32100 32300 34000	PH (UNITS) 7.5 7.8 7.2	COLOR (PLAT- INUM- COBALT UNITS) 10 40 40	TUR- BID- ITY (NTU) 15 10		OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L) 270 250 660	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG) 27000	HARD- NESS (MG/L AS CACO3) 3900 4000 4300	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 3800 3900 3900	CALCIUM DIS- SOLVED (MG/L AS CA) 260 260 280
DATE CCT , 1980	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS-	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)
02 02 02	780 820 880	6600 6600 7200	260 240 210	102 105 447	1600 1600 1500	12000	38 1960 23 7 000	1940	25 20 15400	.05 .00 .00	
DATE	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	ORGANIC	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)
OCT , 1980 02 02	.05 .00 .00	.09 .06 1.3	.08 .04 1.3	 211	1.2 .91 19.0	1.1 .96 21.0	1.3 .97 20.0	1.2 1.0 22.0	 15000	1.3 .97 20	.11 .08 .09
DATE	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
OZ 02 02	.07 .06 .01	1 3 6	1 1 5	 1	10 0 10	0 0 10	 1	0 0 0	0 0 0	 .13	50 20
DATE CCT , 1980	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVEI (UG/L AS CU)	TOM MA- TERIAL (UG/G	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NFSE, TOTAL RECOV- ERABLE (UG/L AS MN)
02 02 02	50 0 30	 28	0 0 0	5 12 20	2	! 2 2 21	100	4 3 6	2 0 2	 20	110 80 5800
DA CCT ,	NE D SO (U TE AS	NGA- NE SE, RE IS- FM LVED TOM G/L TE	COV. TO BOT- RE IMA- ER RIAL (U	COV- I ABLE SC IG/L (U	CURY FN OIS- TO OLVED T OG/L	M BOT- I OM MA- F TERIAL F (UG/G (ECOV- DI RABLE SO UG/L (U	RECKEL, FM IS- TOM DIVED TE JG/L (U	MA- NI RIAL TO G/G (U	LE- NI UM, D TAL SO G/L (U	CLE- UM, DIS- DIVED G/L SE)
02 02 02	•	150 30 5700	 640	.0 .0	.1 .1 .0	 .05	7 3 6	6 0 3	 20	0 0 0	0 0 0

TABLE 4.--WATER-QUALITY DATA, LOWER CALCASIEU RIVER

295836093200700 CALCASIEU RIVER AT MILE 15.0, NEAR HACKBERRY, LA--CONTINUED

	SELE- NIUM, TOTAL IN BOT- IOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)		ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN)	PHENOLS (UG/L)	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)	
02 02 02	0	20 30 50	20 30 40	 65	7.0 6.6 18	.00 .00	 0	0 0 1	 	1000	
PCB, TOTAI DATE (UG/L) CCT , 1980) (UG/	AL LENI OT- POLY MA- CHIC IAL TOTA (KG) (UG/)	A- PCN ES, TOTA Y- IN BC DR. TOM M AL TERI L) (UG/F	L VT- VA- ALDF VAL TOT	AL TER (/L) (UG/	AL OT-CHI MA-DAI CIAL TO:	DA TO LOR- IN NE, TOM TAL TE /L) (UG	IOR- NE, TAL BOT- MA- DD RIAL TOT /KG) (UG	AL TERI	AL OT- MA- DD IAL TOT KG) (UG	AL /L)
02 02 02	0		.0 .0 .0	.0	.000 .000	.0	.0 .0	0.0	.000 .000		.000 .000 .000
DDE. TOTAI IN BO' TOM M TERL. DATE (UG/KI CCT , 1980	, L T- A- DE AL TOI	DD TOTI IN BO	I, AL OT- DI- MA- AZINC IAL TOTA	DI AZIN TO'I - IN F DN, TOM AL TEI	- ION, FAL BOT- DI MA- ELE RIAL TOI	D: ELDI TO' I- IN I PRIN TOM	I- RIN, TAL BOT- EN MA- SUI RIAL TO	END SULF TOI DO- IN E FAN, TOM	O- 'AN, 'AL 'OT- MA- ENDR IIAL TOT	ENDR TOT IN B IN, TOM AL TER	IN, AL OT- MA- IAL
02	 	.000		.00 .00		.000		.000		.000	
	.0	.000		.04	.0	.000	.0	.000	.0	.000	.0
DATE OCT , 1980 02 02	ETHION, TOTAL (UG/L) .00 .00	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)0	HEPTA-CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOTAL (UG/L))	LINDANE TOTAL (UG/L)	TERIAL (UG/KG) 00	MALA-THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
DATE CCT , 1980	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, TOTAL (UG/L)	METHYL TRI - THION, TOT. IN BOTTOM MATL. (UG/KG)	ī	TERIAL	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	- ,
02 02	.00 .00		.00		.00		.00)	.00	 	
DATE		PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX-APHENE, TOTAL (UG/L)	TOXA-PHENE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)	TOTAL TRI- THION (UG/L)	TRI - THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2,4-D, TOTAL (UG/L)	, 2, 4-DP TOTAL (UG/L)	TOTAL (UG/L)	SILVEX, TOTAL (UG/L)	
02 02 02	.00 .00	.00	.0 .0 .0	 .0	.00 .00		09	.00	.00 .00 .00	.00 .00 .00	
TE TIME	METER (MI	M) 2.	00 1.00		0.25	BOTTOM M 0.125 0	MATERIAL I	PARTICLE S	IZE 16 0.008		0.002 56.0 4

HYDROLOGIC DATA--Continued

Part B: Elutriate Data

(Tables 5-12)

TABLE 5.--WATER-QUALITY DATA, MISSISSIPPI RIVER-GULF OUTLET

292731089070500 GULF OF MEXICO 3.5 MILES WEST OF MISSISSIPPI RIVER-GULF OUTLET AT MILE -5.0 (BRETON SOUND), NEAR HOPEDALE, LA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
10-30-79	1145	32000	8.4	10	<1.0	51	26000	1800	1700	240	290
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FID (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
10-30-79	7500	330	120	2	98	1700	12000	32	26	6	.66
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO GEN, AMMONI TOTAL (MG/L AS N)	AMMONIA A DIS- SOLVE	GEN,NH A TOTAL IN BOT D MAT.	4 NITRO GEN, ORGANI TOTAL	ORGAN C DIS SOLV (MG/	GEN,AM C MONIA ORGANI TOTAL C (MG/I	I- GEN, + MONI C ORGA DIS	AM- GEN, IA + + OI INIC TOT IS BOT IS/L (MI	RG. IN MAT G/KG	
10-30-79	.01	.10	.01	42	.60	•60	.70	.6	51 48	310	
DATE	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	TOM MA-	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- FRABLE (UG/L AS CD)
10-30-79	1.4	.16	ە.0	2	2	0	6	0	0	0	0
DATE	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)
10-30-79	0	0	.16	20	10	10	9	0	0	0	0
I	RE FM TON TI (U	ima- d Trial so NG/G (U	ON, TO IS- RE LVED ER G/L (U	AD, S TAL PE COV- RE ABLE ER G/L (U	COV- I ABLE SO G/L (U	RAD, FM DIS- TO DLVED T DG/L (ECOV. NE BOT- TO M MA- RE ERIAL EI UG/G (U	SE, NE TAL S COV- PE RABLE RE IG/L (U	SUS- NI ENDED I ECOV. SO JG/L (1	ANGA- NE ESE, RE DIS- FM DLVED TON UG/L TE	NGA- SE, COV. BOT- I MA- IRIAL IG/G)
10-3	10-79	4	100	0	0	0	20	30	10	20	570
	TC RI EE (U (DATE AS	DOOV- D RABLE SO DG/L (U S HG) AS	RECURY FM: IS- TOM LVED TE G/L (U HG) AS	BOT- TO MA- RE RIAL ER G/G (U HG) AS	COV- DI ABLE SC G/L (U NI) AS	REKEL, FM SS- TO DLVED T IG/L (NI) A	M MA- NI ERIAL TO UG/G (U S NI) AS	NICLE- S TUM, PI TTAL TO JG/L (U S SE) AS	SUS- NI ENDED I DTAL SO UG/L (U S SE) AS	ELE- NI IUM, TO DIS- IN DLVED TON DG/L TE S SE) (U	CLE- UM, TAL BOT- I MA- CRIAL IG/G)
10-3	30-79	.0	.1	.03	0	2	16	0	0	0	0

TABLE 5.--WATER-QUALITY DATA, MISSISSIPPI RIVER-GULF OUTLET

292731089070500 GULF OF MEXICO 3.5 MILES WEST OF MISSISSIPPI RIVER-GULF OUTLET AT MILE -5.0 (BRETON SOUND), NEAR HOPEDALE, LA--CONTINUED

DA'	ZIN TOTE RECO ERAI (UG, TE AS	AL PENDI OV- RECOV BLE ERABI /L (UG/1	ED ZINC 7- DIS LE SOLV L (UG/	5- TOM M MED TERM ML (UG/	VT- CARBO NA- ORGAN CAL TOTA 'G (MG)	NIC CYANI AL TOTA /L (MG,	AL TERIA /L (UG,	AL OT- MA- AL PHENO /G	METT	SE, GREAS AL TOT. DV. BOT N JI- GRAV RIC METI	SE, IN MAT /I- RIC	
10-30	-79	10 10)	0 4	10 7.6	5 .00	o :	1 4) ()	
DATE	OXYGEN DEMAND CHEM- ICAL (HIGH LEVEL) (MG/L)	, PCB,	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	DIS- SOLVED	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
10-30-79 10-30-79	510	 •0	.00	3	.0	.00	.0	.00	.00	.0 	.00	.00
DATE	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
10-30-79 10-30-79	10	.00	.00	.0 	•00	.00	.0 	.00	.00	.0	 .01	
DATE	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN DIS- SOLVED (UG/L)	DI - ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- SOLVED (UG/L)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION DIS- SOLVED (UG/L)
10-30-79 10-30-79	.00	•0 	.00	.00	.0	.000	•00	•0 	.00	.00	.0	.00
DATE	ETHION TOTAL (UG/L)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOX IDE TOTAL (UG/L)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE DIS- SOLVED (UG/L)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION, DIS- SOLVED (UG/L)
10-30-79 10-30-79	•00 	•0 	.00	.00	.0	.00	.00	.0	.00	.00	.0	.00
DATE	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, DIS- SOLVED (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI- THION, DIS- SOLVED (UG/L)	METHYL TRI- THION, TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, DIS- SOLVED (UG/L)
10-30-79 10-30-79	•00	.0 	.00	.00	.0 	.00	.00 	.0 	.00	.00	.0	.00

TABLE 5.--WATER-QUALITY DATA, MISSISSIPPI RIVER-GULF OUTLET

292731089070500 GULF OF MEXICO 3.5 MILES WEST OF MISSISSIPPI RIVER-GULF OUTLET AT MILE -5.0 (BRETON SOUND), NEAR HOPEDALE, LA--CONTINUED

NATIVE SAMPLE

TOXA-

PARA-

DATE	MIREX, TOTAL (UG/L)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, DIS- SOLVED (UG/L)	PARA- THION, TOTAL (UG/L)	THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE, DIS- SOLVED (UG/L)	PER- THANE TOTAL (UG/L)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX- APHENE, DIS- SOLVED (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METHYL TRI- THION, DIS- SOLVED (UG/L)	
10-30-79	.00	.0		.00	.0		.00	.00		.00	.0		
10-30-79			.00			.00			.00			.00	
		TRI - THION, TOTAL									CHLOR-A PHYTO- PLANK-	CHLOR-B PHYTO- PLANK-	
	TOTAL TRI-	IN BOT- TOM MA-	2,4-D, DIS-	2,4-D,	2,4-DP DIS-	2, 4-DP	2,4,5-T DIS-	2,4,5-T	SILVEX, DIS-	SILVEX,	TON CHROMO	TON CHROMO	
DATE	THION (UG/L)	TERIAL (UG/KG)	SOLVED (UG/L)	TOTAL (UG/L)	SOLVED (UG/L)	TOTAL (UG/L)	SOLVED (UG/L)	TOTAL (UG/L)	SOLVED (UG/L)	TOTAL (UG/L)	FLUOROM (UG/L)	FLUOROM (UG/L)	I
			(00) 11)		(00) 2)		(00, 2,		(00, 2,				
10-30-79	.00	.0		.01		.00		.00		.00	5.61		
10-30-79 DATE TI	 Æ		.01		•00.	 :	.00 BOTTOM MAT	TERIAL PAF	.00	Œ			
ОТ, 1979 30 114		METER (MM) NER BY WEIG	2.00 GHT	1.00	0.50	0.25 0 98		062 0.03 0 48.5	34.0	0.008 27.0	0.004 24.5	0.002 22.5	0.001 20.0

ELUTRIATE SAMPLE

DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	ORGANIC	ARSENI	DIS- SOLVED (UG/L	CADMIU DIS- SOLVED (UG/L AS CD)	DIS- SOLVEI (UG/L	COPPE DIS- SOLVE (UG/L	D D
10-30-79	1145	510	630	3.9	.00	3.8	3	0	1	16	0	
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVEL (UG/L AS MN)	MERCUR DIS- SOLVED (UG/L	DIS-	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVED (UG/L AS ZN)	(MG/L	PHENOIS (UG/L)	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVED (UG/L)	ALDRIN DIS-, SOLVED (UG/L)	CHLOR- DANE, DIS-, SOLVED (UG/L)
10-30-79	0	690	.1	0	0	20	.00	2	.0	.0	.000	•0
DATE 10-30-79	DDD, DIS- SOLVED (UG/L)	DDE, DIS- SOLVED (UG/L)	DDT, DIS- SOLVED (UG/L)	DI- AZINON, DIS- SOLVED (UG/L)	DI- ELDRIN DIS- SOLVED (UG/L)	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDRIN, DIS- SOLVED (UG/L)	ETHION, DIS- SOLVED (UG/L)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)
DATE	METH- OXY- CHLOR, DIS- SOLVED (UG/L)		METHYL TRI- THION, DIS- SOLVED (UG/L)	MIREX, DIS- SOLVED (UG/L)	PARA- THION, DIS- SOLVED (UG/L)	PER-	TOX- APHENE, DIS- SOLVED (UG/L)	.00 TRI - THION DIS- SOLVED (UG/L)	2,4-D, DIS- SOLVED (UG/L)	.000 2, 4-DP DIS- SOLVED (UG/L)	.000 2,4,5-T DIS- SOLVED (UG/L)	.00 SILVEX, DIS- SOLVED (UG/L)
10-30-79	.00	.00	.00	.00	.00	.00	.0	.00	.02	.00	.00	.00

TABLE 6.--WATER-QUALITY DATA, SOUTHWEST PASS
285339089254800 GULF OF MEXICO 400 YARDS EAST OF SOUTHWEST PASS AT MILE 21.0 (BHP), NEAR BURFWOOD, LA
NATIVE SAMPLE

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
10-24-79	1200	27900	8.3	10	<1.0	410	32000	3500	3400	220	720	5400
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	
10-24-79	280	136	0	112	1500	9900	30	18	12	.44	.01	
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	
10-24-79	.06	.00	37	.94	.74	1.0	.74	4520	1.5	.09	.06	
DATE	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- EPABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RFCOV. (UG/L AS CR)
10-24-79	2	1	1	9	10	0	0	0	1	.17	10	0
DATE	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TFRIAL (UG/G AS PB)
10-24-79	10	10	0	0	0	0	14	90	0	0	0	20
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NTUM, SUS- PENDED TOTAL (UG/L AS SF)
10-24-79	40	0	40	500	.0	.0	.05	0	3	15	0	0
DATE	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN)	PHENOLS (UG/L)	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)
10-24-79	0	1	10	0	10	45	5.0	.00	90	5	0	0

TABLE 6.--WATER-QUALITY DATA, SOUTHWEST PASS 285339089254800 GULF OF MEXICO 400 YARDS EAST OF SOUTHWEST PASS AT MILE 21.0 (BHP), NEAR BURRWOOD, LA--CONTINUED NATIVE SAMPLE

OXYGEN NAPH-DEMAND. PCB. ALDRIN, THA-PCN. CHFM-TOTAL LENES, TOTAL TOTAL CHTOR-ICAL PCB, IN BOT-PCN, POLY-IN BOT-ALDRIN. IN BOT-DANE, CHLOR-(HIGH DIS-PCB, TOM MA-DIS-CHLOR. TOM MA-ALDRIN, DANE, DIS-TOM MA-DIS-LEVEL) SOLVED TOTAL TERIAL SOLVED SOLVED TOTAL TERIAL TOTAL TERIAL SOLVED TOTAL DATE (MG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L) (UG/KG) (UG/L) (UG/KG) (UG/KG) (UG/L) 10-24-79 .00 26 .00 .000 .0 ٠.0 . 0 10-24-79 430 --CHLOR-DANE, DDD, DDE, DDT, TOTAL TOTAL TOTAL TOTAL DI-IN BOT-DDD, IN BOT-DDE, IN BOT DDT, IN BOT-AZINON, TOM MA-DIS-DDD. DIS-DDE. DIS-DDT. TOM MA-DIS-TOM MA-TOM MA-SOLVED SOLVED SOLVED TERIAL TOTAL TERIAL TOTAL TERIAL TOTAL TERIAL SOLVED (UG/L) (UG/L) DATE (UG/KG) (UG/L) (UG/L) (UG/KG) (UG/L) (UG/KG) (UG/L) (UG/KG) (UG/L) 10-24-79 .000 .000 .000 .0 6 2.0 6.3 --10-24-79 DT-DT-ENDO-ELDRIN. ENDRIN, AZTNON. SHEAN. DT-ENDO-TOTAL. TOTAT. TOTAL. TOTAL. ENDO-ENDRIN. ETHION **ELDRIN** SULFAN, DT-DT-IN BOT-IN BOT-IN BOT-TN BOT-ENDRIN. FLORIN SULFAN. TOM MA-AZTNON. TOM MA-TOM MA-DTS-DIS-TOM MA-DIS-DIS-SOLVED SOLVED TERIAL SOLVED TOTAL TERJAL SOLVED TOTAT. TERTAL. TOTAL. TERTAL. TOTAT. DATE (UG/KG) (UG/KG) (UG/L) (UG/L) (UG/KG) (UG/I.) (UG/KG) (UG/L) (UG/L) (UG/L) (DG/L) (UG/L) .000 .0 .00 .0 10-24-79 .000 .00 .0 .5 10-24-79 нерта-HEPTA-ETHION, CHLOR, HEPTA-CHLOR LINDANE HEPTA-TOTAL MALA-TOTAL HEPTA-TOTAL CHLOR **EPOXIDE** IN BOT-CHLOR LINDANE IN BOT-THION CHLOR, HEPTA-IN BOT-EPOXIDE TOT. IN ETHION, TOM MA-DIS-CHLOR, TOM MA-DIS-EPOXIDE BOTTOM DIS-LINDANE TOM MA-DIS-TOTAL TERIAL SOLVED TOTAL TERIAL SOLVED TOTAL MATL. SOLVED TOTAL TERIAL SOLVED DATE (UG/L) (UG/KG) (UG/L) (UG/KG) (UG/L) (UG/L) (UG/KG) (UG/L) (UG/L) (UG/KG) (UG/L) (UG/L) 10-24-79 .00 .0 .000 .0 .000 .0 .000 .0 10-24-79 MALA-METH-METHYT. METHYL METH-THION. METHYT. METHYT. OXY-PARA-- זמי METH-METHYL METHYL TOTAL OXY-CHLOR. PARA-THTON. TRI-THTON. MIREX, MALA-CHTOR. IN BOT-OXY-TOT. IN THION. PARA-TOT. IN THTON. TRT-TOT. IN BOTTOM BOTTOM BOTTOM THION. TOM MA-CHLOR. THION. THION. DIS-DIS-DIS-DIS-SOLVED SOLVED MATT. SOLVED TOTAL. MATT. TOTAL TERIAL. SOLVED TOTAL MATT. TOTAL. DATE (UG/L) (UG/KG) (UG/L) (UG/L) (UG/KG) (UG/L) (UG/L) (UG/KG) (UG/L) (UG/L) (UG/KG) (UG/L) .00 __ 10-24-79 .00 .0 .00 .0 .00 .0 .0 10-24-79 TOXA-PARA-MIREX, THION. PER-PHENE. TOTAL PARA-TOTAL PER-THANE TOX-TOTAL TRI-IN BOT-THION, PARA-IN BOT-THANE, PER-IN APHENE, TOX-IN BOT-THION, APHENE, MIREX. TOM MA-DTS-THION. TOM MA-THANE TOM MA-DTS-DIS-BOTTOM DTS-TOTAL. SOLVED TERTAL. TOTAL TERTAL SOLVED TOTAL MATERIL SOLVED TOTAL TERIAL SOLVED

(UG/L)

(UG/L)

.00

(UG/KG)

.00

(UG/L)

(UG/L)

.0

(UG/KG)

.0

(UG/L)

DATE

10-24-79

10-24-79

(UG/L)

.00

(UG/KG)

.0

(UG/L)

(UG/L)

.00

(UG/KG)

.0

TABLE 6.--WATER-QUALITY DATA, SOUTHWEST PASS

285339089254800 GULF OF MEXICO 400 YARDS EAST OF SOUTHWEST PASS AT MILE 21.0 (BHP), NEAR BURRWOOD, LA--CONTINUED

DATE	TOTAL TRI- THION (UG/L)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2,4-D, DIS- SOLVED (UG/L)	2,4-D, TOTAL (UG/L)	2,4-DP DIS- SOLVED (UG/L)	2, 4-D TOTAL (UG/L	P T	,5-T DIS- DIVED JG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, DIS- SOLVED (UG/L)	SILVEX, TOTAL (UG/L)	CHLOR-A PHYTO- PLANK- TON CHROMO FILUOROM (UG/L)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUORO (UG/L	м	
10-24-79	.00	.0		.01		.00	ı		.00		.00	2.55	.000		
10-24-79			.01		.00			.00		.00					
DATE T															
OCT , 1979	DIA	METER (MM)	2.00	1.00	0.50	0.25	0.125	0.06	2 0.03	0.016	0.008	0.004	0.002	0.001	
24	30 % FIN	ER BY WEIG	SHT			99.0	98.5	94.5	74.0	55.0	43.0	33.5	29.5	28.5	
	24 30 % FINER BY WEIGHT 99.0 98.5 94.5 74.0 55.0 43.0 33.5 29.5 28.5 ELUTRIATE SAMPLE														

DATE	M (M	TTLE- C ABLE I ATTER H L/L/ LE	HEM- AMM CAL I IGH SC VEL (M	DIS- DLVED MG/L	RGANIC I	GEN,AM- MONIA + A ORGANIC DIS. (MG/L AS N)	ARSENIC DIS- SOLVED (UG/L	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	LFAD, DIS- SOLVED (UG/L AS PB)
10-24-79	1200	530	540 2	2.2	.30	2.5	3	0	0	12	0	0
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVED (UG/L AS ZN)	CYANIDE DIS- SOLVED (MG/L AS CN)	PHENOLS (UG/L)	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVED (UG/L)	ALDRIN DIS-, SOLVED (UG/L)	CHLOR- DANE, DIS-, SOLVED (UG/L)	DDD, DIS- SOLVED (UG/L)
10-24-79	2200	.1	3	0	20	0.00	14	.0	.0	.000	.0	.000
	DDE,	DDT,	DI- AZINON,	DI- ELDRIN	ENDO- SULFAN,	ENDRIN,	ETHION	HEPTA- CHLOR-		LINDANE	MALA- THION	METH- OXY- CHLOR,
DATE	DIS- SOLVED (UG/L)	DIS- SOLVED (UG/L)	DIS- SOLVED (UG/L)	DIS- SOLVED (UG/L)	DIS- SOLVED (UG/L)	DIS- SOLVED (UG/L)	DIS- SOLVED (UG/L)	DIS- SOLVEI (UG/L)	DIS- SOLVED	DIS- SOLVEI (UG/L)	DIS- SOLVE	
DATE 10-24-79	SOLVED (UG/L)	DIS- SOLVED	DIS- SOLVED	SOLVED	SOLVED	SOLVED	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	DIS- SOLVET	DIS- SOLVE	SOLVED
	SOLVED (UG/L)	DIS- SOLVED (UG/L) .000 METHYI TRI- THION, DIS- SOLVEI	DIS- SOLVED (UG/L) .02 MIREX, DIS- SOLVED	SOLVED (UG/L)	SOLVED (UG/L) .000 PER THAN DIS ED SOLV	SOLVED (UG/L) .000 - TOX E APHEN - DIS ED SOLV	DIS-SOLWED (UG/L) .00 - TRI-E, THION-DIS-ED SOLWI	DIS-SOLVEI (UG/L) .000 - N 2,4 DIS ED SOLVEI	DIS- DIS- DIVED (UG/L) .000 -D, 2, 4-1 -D DIS- DIS- DIS- SOLVED SOLVED	DIS-SOLVEI (UG/L) .000 OP 2,4,5 DIS SOLVEI	DIS- D SOLVER O (UG/L) O .00 5-T SILU S- DIS- VED SOLUTION	SOLVED (UG/L) .00 VEX, S- VED

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, IA 292738089422800 GRAND BAYOU NEAR PORT SULPHUR, IA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
7-17-79	1110	10800	7.5	40	<1.0	40	140000	1100	1000	84	210
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FILD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- CEN, NITRATE TOTAL (MG/L AS N)
7-17-79	1900	85	80	0	66	450	3600	15	5	10	.00
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	IN BOT.	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	GEN,AM- MONIA + ORGANIC	MONIA	M- GEN,N + + ORG IC TOT I BOT N L (MG/	IH4 S. IN NAT YKG	
7-17-79	.02	.10	.10	57	1.2	1.1	1.3	1.2	2980)	
DATE	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
7-17-79	1.3	.07	.03	2	2	1	6	<10	<10	0	<2
DATE	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)
7-17-79	0	<2	.28	<20	0	<20	10	0	2	0	2
DATE	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- FRABLE (UG/L AS HG)
7-17-79	12	70	5	5	ND	10	140	140	<10	260	<.1
	D SC (U DATE AS	RECURY FM DIS-TOM LIVED TE G/L (U HG) AS	BOT- TO MA- RE RIAL ER G/G (U	KEL, S TAL PE COV- RE ABLE ER G/L (U	COV- DI ABLE SO G/L (U	RE KEL, FM S- TOM LVED TE G/L (U	IMA- NI RIAL TO KG/G (U	NI LE- S UM, PE TAL TO G/L (U	SUS- N. ENDED I PTAL SO IG/L (1	ELE- NI TUM, TO DIS- IN DLVED TOM UG/L TE	CLE- CUM, OTAL BOT- I MA- CRIAL UG/G)

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292738089422800 GRAND BAYOU NEAR PORT SULPHUR, LA--CONTINUED

E	TC RI EI (1	OTAL PER OCOV- REX RABLE ERV UG/L (UX	IS- VIDED ZIN XOV- DI ABLE SOI G/L (UC	IC, FM E S- TOM EVED TEE E/L (UC	COV. BOT- CAR MA- ORG RIAL TO G/G (M	TAL TO: G/L (M	TO IN: VIDE TOM TAL TER G/L (U	NIDE TAL BOT- MA- IAL PHEI G/G CN) (UK	GREA TO: REX NOLS GRA MET	ASE, GREATER TOT COV. BOT AVI- GRAFIC ME	AND ASE, IN MAT AVI- TRIC /KG)	
7-1	.7-79	40	10	30	45	12	.00	0	4	0	0	
DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	CHI.OR- DANE, TOTAL (UG/L)
7 - 17-79 7 - 17-79	110	.0	.00	0	.0	.00	.0	.000	.000	.0	.0	.0
DATE	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
7-17-79 7-17-79	3.0	.000	.000	.0	 •000	.000	.9 	.000	.000	.0	 •06	
		DI-										
DATE	DI- AZINON, TOTAL (UG/L)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN DIS- SOLVED (UG/L)	DI- ELDRIN TOTAL	TOM MA-	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDO-	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- SOLVED (UG/L)		ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION DIS- SOLVED (UG/L)
DATE 7-17-79 7-17-79	AZINON, TOTAL	AZINON, TOTAL IN BOT- TOM MA- TERIAL	ELDRIN DIS- SOLVED	DI- ELDRIN TOTAL	ELDRIN, TOTAL IN BOT- IOM MA- TERIAL	SULFAN, DIS- SOLVED	ENDO- SULFAN, TOTAL	SULFAN, TOTAL IN BOT- TOM MA- TERIAL	DIS-	ENDRIN, TOTAL	TOTAL IN BOT- TOM MA- TERIAL	DIS- SOLVED
7-17-79	AZINON, TOTAL (UG/L)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 ETHION, TOTAL IN BOT- TOM MA-	ELDRIN DIS- SOLVED (UG/L)	DI - ELDRIN 'TOTAL (UG/L)	ELDRIN, TOTAL IN BOT- IOM MA- TERIAL (UG/KG)	SULFAN, DIS- SOLVED (UG/L)000 HEPTA- CHLOR EPOXIDE DIS-	ENDO- SULFAN, TOTAL (UG/L) .000 	SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 HEPTA- CHLOR EFOXIDE TOT. IN BOTTOM MATL.	DIS- SOLVED (UG/L)	ENDRIN, TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANI TOTAL IN BOT-	DIS-SOLVED (UG/L)00 MALA THION - DIS- L SOLVED
7-17-79 7-17-79	AZINON, TOTAL (UG/L) .00 ETHION TOTAL	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 ETHION, TOTAL IN BOT- TOM MA-	ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHIOR, DIS- SOLVED	DI - ELDRIN TOTAL (UG/L) .000 HEPTA- CHIOR, TOTAL	ELDRIN, TOTAL IN BOT- IOM MA- TERIAL (UG/KG) .0 HEPTA- CHLOR, TOTAL IN BOT- TOM MA-	SULFAN, DIS- SOLVED (UG/L)000 HEPTA- CHIOR EPOXIDE DIS- SOLVED	ENDO- SULFAN, TOTAL (UG/L) .000 HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	DIS- SOLVED (UG/L)00 LINDANF DIS- SOLVED	ENDRIN, TOTAL (UG/L) .00 LINDANE TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANI TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DIS-SOLVED (UG/L)00 MALA THION - DIS- L SOLVED
7-17-79 7-17-79 DATE 7-17-79	AZINON, TOTAL (UG/L) .00 ETHION TOTAL (UG/L)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) O ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) O MALA- THION, TOTAL IN BOT- TOTAL	ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHIOR, DIS- SOLVED (UG/L)000 METH- OXY- CHIOR, DIS-	DI- ELDRIN TOTAL (UG/L) .000 HEPTA- CHIOR, TOTAL (UG/L) .000	ELDRIN, TOTAL IN BOT- IOM MA- TERTAL (UG/KG) -0 HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	SULFAN, DIS- SOLVED (UG/L) 000 HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L) 000 METHYL PARA- I THION, I DIS- SOLVED SOLVED	ENDO- SULFAN, TOTAL (UG/L) .000 HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	SULFAN, TOTAL IN BOT- TOM MA- TERTAL (UG/KG) .0 .0 .1 HEPTA- CHIOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) .0 .0 .0 .0 HEPTA- CHIOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) .0 .1 HETHYL PARA- THION, TOT. IN	DIS- SOLVED (UG/L) 00 LINDANF DIS- SOLVED (UG/L) 000 METHYL TRI- THION,	ENDRIN, TOTAL (UG/L) .00 LINDANE TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANI TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DIS-SOLVED (UG/L) 00 MALA-THION DIS-SOLVED (UG/L)

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292738089422800 GRAND BAYOU NEAR PORT SULPHUR, LA--CONTINUED

NATIVE SAMPLE

DATE	MIREX, TOTAL (UG/L)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, DIS- SOLVED (UG/L)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE, DIS- SOLVED (UG/L)	PER- THANE TOTAL (UG/L)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX- APHENE, DIS- SOLVED (UG/L)	TOX- APHENE, TOTAL (UG/L)	TERIAL	TRI- THION, DIS- SOLVED
7-17-79 7-17-79	.00 	.0	.00	.00	.0 	.00	.00	•00 	.0	.0	.0	.00
DATE	TOTAL TRI - THION (UG/L)	TRI- THION TOTAL IN BOT TOM MA TERIA (UG/KG	- 2,4-D, - DIS- L SOLVEI	2,4-D TOTAL	SOLVED	2, 4	L SOI	,5-T IS- 2,4, LWED TOT G/L) (UG	AL SOLV	S- SILVED TO	TAL FLU	IO- PHYTO- NK- PLANK- N TON
7-17 <i>-</i> 79 7-17 <i>-</i> 79	•00	.0	.01	.00	.00	•	00		00	 00	.00 2	7.3 2.60
, 2, 1,5			•01		•00		·	•00	•	•		
					E	LUTRIATE	SAMPLE					
DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-	ARSENIO DIS- ED SOLVED L (UG/L	BERYL C LIUM, DIS- SOLVED (UG/L AS BE)	CADMIU DIS-	DIS- SOLVE (UG/L	COPPER, DIS- SOLVED (UG/L
7-17-79	1110	380	130	1.3	1.4	2.7		5	0	1	0	6
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVED (UG/L AS ZN)	CYANIDE DIS- SOLVED (MG/L AS CN)	PHENOLS	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVED (UG/L)	ALDRIN DIS-, SOLVED (UG/L)	CHLOR- DANE, DIS-, SOLVED (UG/L)
7-17-79	0	10	.1	5	0	30	.00	0	.0	.0	.000	.0
DATE	DDD, DIS- SOLVED (UG/L)	DDE, DIS- SOLVED (UG/L)	DIS- SOLVED S	DIS-		ENDO- GULFAN, DIS- SOLVED (UG/L)	ENDRIN, DIS- SOLVED (UG/L)	ETHION, DIS- SOLVED (UG/L)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)
7-17-79	.000	.000	.000	.07	.000	.000	.000	.00	.000	.000	.000	.00
	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	METHYL PARA- THION, DIS- SOLVED (UG/L)	DIS- SOLVED S	MIREX, DIS-	PARA- THION, DIS- SOLVED (UG/L)	PER- THANE DIS- SOLVED (UG/L)	TOX- APHENE, DIS- SOLVED (UG/L)	TRI - THION DIS- SOLVED (UG/L)	DIS-	2, 4-DP DIS- SOLVED (UG/L)	2,4,5-T DIS- SOLVED (UG/L)	SILVEX, DIS- SOLVED (UG/L)

.00 .00

.00

7-17-79 .00 .00 .00 .00 .00 .00 .00 .02

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292842089424100 UNNAMED BAYOU NEAR PORT SULPHUR, LA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
7-17-79	1045	10400	7.1	50	<1.0	38	400000	1100	990	82	210	1900
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITROGEN, AMMONIA TOTAL (MG/L AS N)	AMMONIA A DIS- SOLVEI	GEN,NH TOTAL IN BOT	4
7-17-79	82	93	0	76	430	3300	.05	.02	.09	.07	704	
DATE	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	
7-17-79	1.3	1.1	1.4	1.2	6740	1.5	.07	.04	2	2	1	
DATE	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
7- 17-79	7	<10	<10	0	<2	0	<2	•75	<20	0	<20	15
DATE	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)
7-17-79	0	4	0	4	16	80	3	3	ND	20	210	160
DA	NES DI SOI (UC	IGA- NES SE, REC IS- FM E JVED TOM S/L TER	XOV. TOT SOT- REC MA- ERA RIAL (UC	AL MERC	URY FM E S- TOM VED TEF E/L (UC	OV. NICK OT- TO MA- REC RIAL ERA G/G (UC	TAL PEN COV- REC ABLE ERA G/L (UC	JS- JDED NICK JOV- DIS ABLE SOI G/L (UC		OV. OT- SELI MA- NIUI IAL TOTA /G (UG,	AL TOI /L (UG	M, S- DED PAL
7-17	7-79	50 2	290 <	:.1 <	:.1 .	.02	3	0	3	15 <	1	0
DA	SOI (UC	M, TOT S- IN E VED TOM S/L TER	M, ZIN PAL TOT BOT- REC MA- ERA RIAL (UC		S- DED ZIN OV- DI BLE SOI JL (UG	IC, FM F S- TOM VED TEF S/L (UC	COV. BOT- CARE MA- ORGA RIAL TOT	NIC CYAN FAL TOI G/L (MC		AL OT- MA- AL PHENO /G	MET	SE, AL OV. VI- RIC
7- 17	7-79	<1	0	30	0	30	85]	13	•00	0	2	0

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292842089424100 UNNAMED BAYOU NEAR PORT SULPHUR, LA--CONTINUED

DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
7-17-79 7-17-79	 110	.0	.00	0	 •0	.00	<u>.0</u>	.000	.000	.0	.0	.0
DATE	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
7-17-79 7-17-79	4.0	.000	.000	1.6	.000	.000	2.4	.000	.000	.0 	.07	
DATE	DI-	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI - ELDRIN DIS- SOLVED (UG/L)	DI-	TOM MA-	ENDO- SULFAN, DIS- S SOLVED (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- 1 SOLVED (UG/L)	ENDRIN, TOTAL	IOM MA-	ETHION DIS- SOLVED (UG/L)
7-17-79 7-17-79	.00	.0	.000	•000	.0	.000	.000	.0	.00	.00	.0	.00
		ETHION,			HEPTA- CHLOR,	НЕРТА-		HEPTA- CHLOR			LINDANE	
DATE	ETHION, TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL	CHLOR EPOXIDE DIS-	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	MATL.	LINDANE DIS- SOLVED (UG/L)	LINDANE TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION DIS-
DATE 7-17-79 7-17-79	TOTAL	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR, DIS- SOLVED	CHLOR, TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR EPOXIDE DIS- SOLVED (UG/L)	CHLOR EPOXIDE TOTAL (UG/L)	TOT. IN BOTTOM MATL. (UG/KG) 0.0	DIS- SOLVED	LINDANE TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION DIS- SOLVED (UG/L)
7-17-79	TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL	CHLOR, DIS- SOLVED (UG/L)	CHLOR, TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR EPOXIDE DIS- SOLVED (UG/L)000 METHYL PARA- THION, DIS-	CHLOR EPOXIDE TOTAL (UG/L)	TOT. IN BOTTOM MATL. (UG/KG) 00 .0 METHYL PARA- THION, TOT. IN BOTTOM MATL.	DIS- SOLVED (UG/L)	LINDANE TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION DIS- SOLVED (UG/L)
7-17-79 7-17-79	TOTAL (UG/L) .00 MALA- THION,	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0	CHLOR, DIS- SOLVED (UG/L)000 METH- OXY- CHLOR, DIS- SOLVED	CHLOR, TOTAL (UG/L) .000 .000 .000 .000 METH- OXY- CHLOR, TOTAL	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) 0 .0 METH- OXY- CHIOR, TOT. IN BOTTOM MATL. (UG/KG)	CHLOR EPOXIDE DIS- SOLVED (UG/L)000 METHYL PARA- THION, DIS- SOLVED (UG/L)	CHLOR EPOXIDE TOTAL (UG/L) .00 METHYI PARA- THION, TOTAL (UG/L)	TOT. IN BOTTOM MATL. (UG/KG) 0 .0 METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) 0 .0	DIS- SOLVED (UG/L)000 METHYL TRI- THION, DIS- SOLVED	LINDANE TOTAL (UG/L) .000 METHYL TRI- THION, TOTAL	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) 0 .0 METHYL TRI- THION, TOT. IN BOTTOM MATL.	MALA- THION DIS- SOLVED (UG/L)00 MIREX, DIS- SOLVED
7-17-79 7-17-79 DATE 7-17-79	MALA-THION, TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0	CHLOR, DIS- SOLVED (UG/L)000 METH- OXY- CHLOR, DIS- SOLVED (UG/L)	CHLOR, TOTAL (UG/L) .00 METH- OXY- CHLOR, TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) 0 .0 METH- OXY- CHIOR, TOT. IN BOTTOM MATL. (UG/KG)	CHLOR EPOXIDE DIS- SOLVED (UG/L)00 METHYL PARA- THION, DIS- SOLVED (UG/L)	CHLOR EPOXIDE TOTAL (UG/L) .00 METHYI PARA- THION, TOTAL (UG/L)	TOT. IN BOTTOM MATL. (UG/KG) 00 .0 METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) 0 .0 PER- THANE	DIS- SOLVED (UG/L) .000 METHYL TRI- THION, DIS- SOLVED (UG/L) .00 TOX- APHENE,	LINDANE TOTAL (UG/L) .000 METHYL TRI- THION, TOTAL (UG/L) .00	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) 0 .0 METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) .0	MALA- THION DIS- SOLVED (UG/L) 00 MIREX, DIS- SOLVED (UG/L)

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292842089424100 UNNAMED BAYOU NEAR PORT SULPHUR, LA--CONTINUED NATIVE SAMPLE

DATE 7-17-79 7-17-79	TOTAL TRI- THION (UG/L)		- 2,4-D - DIS- L SOLVE	2,4-D D TOTAL	SOLVED) (UG/L)	2, 4 TOTA	-DP D: L SOI L) (UX	,5-T IS- LVED G/L) 	2,4,5- TOTAI (UG/I .00	SOLV	S- SIL ED TO /L) (U	VEX, TAL G/L) 00 	CHLOR- PHYTO PLANI TON CHROI FLUOI (UG,	O- PHYTO- K- PLANK- TON O CHROMO ROM FLUOROM /L) (UG/L) 4 .000
						ELUTI	RIATE SAM	PLE						
DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	AMMON	, IA - ED L	ARSENIO DIS- SOLVED (UG/L AS AS)	BERY LIUM DIS- SOLVE (UG/L AS BE	, CADM DI D SOLV (UG/	S- ED L	CHRO MIUM DIS- SOLVE (UG/L AS CR	OPPER, DIS- D SOLVED (UG/L
7-17-79	1045	460	150	9.4	1.6	11	1	2	4	10	C)	0	2
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVED (UG/L AS ZN)	CYANIDE DIS- SOLVED (MG/L AS CN)	Pl	HENOLS G/L)	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVEI (UG/L)		DRIN DIS-,	CHLOR- DANE, DIS-, SOLVED (UG/L)
7-17-79	1	80	.2	4	0	40	.01		2	.0	•0		.000	.0
DATE	DDD, DIS- SOLVED (UG/L)	DDE, DIS- SOLVED (UG/L)	DDT, A DIS- SOLVED (UG/L)	DIS-	DI- ELDRIN S DIS- SOLVED (UG/L)	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDRIN, DIS- SOLVED (UG/L)	D) SO:	ION, O IS- LVED	HEPTA- CHIOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	SC	DANF DIS- DLVED DG/L)	MALA- THION, DIS- SOLVED (UG/L)
7-17-79	.000	.000	.000	.10	.000	.000	.000		.00	.000	.000		.000	.00
DATE	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	PARA- THION, DIS-	METHYL TRI- THION, DIS- SOLVED (UG/L)	MIREX, DIS- SOLVED (UG/L)	PARA- THION, DIS- SOLVED (UG/L)	PER- THANE DIS- SOLVED (UG/L)	TOX- APHENE, DIS- SOLVED (UG/L)	TH D SO	IS- LVED	2,4-D, DIS- SOLVED (UG/L)	2, 4-DP DIS- SOLVED (UG/L)	SC	1,5-T DIS- DLVED JG/L)	SILVEX, DIS- SOLVED (UG/L)
7-17-79	.00	.00	.00	.00	.00	.00	.0		.00	.07	.00		.00	.00

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 293000089451000 GRAND BAYOU NEAR HAPPY JACK, LA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
7-17-79	0950	10000	7.3	50	<1.0	38	65000	1000	940	78	200
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
7-17-79	1700	74	93	0	76	390	3200	20	2	18	.03
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	IN BOT.	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	ORGANIC	ORGANIC		M- GEN, NA + + ORO NIC TOT I BOT N L (MG/	NH4 G. IN MAT /KG	
7-17-79	.02	.09	.09	37	1.2	1.2	1.3	1.	3 147	70	
DATE	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
7-17-79	1.4	.06	.05	2	1	1	7	10	10	0	<2
DATE	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)
7-17-79	0	<2	.24	<20	10	ND	8	0	5	2	3
DATE	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	RECOV. FM BOT-	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)
7 -1 7- 7 9	58	30	4	4	ND	5	130	80	50	450	0.1
	SC (U	RECURY FM DIS- TOM DIVED TE G/L (U G HG) AS	BOT- TO MA- RE RIAL ER G/G (U	KEL, S TAL PE XXXV- RE XABLE ER IG/L (U	COV- DI ABLE SC IG/L (U	RETKEL, FM S- TOM OLVED TE	ima- ni Erial To KG/G (U	IE- S UM, PE TAL TO G/L (U	SUS- N ENDED : OTAL S OG/L (1	ELE- N IUM, T DIS- IN OLVED TO UG/L T	ELE- IUM, OTAL BOT- M MA- ERIAL UG/G)

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 293000089451000 GRAND BAYOU NEAR HAPPY JACK, LA--CONTINUED

ים	;]]	ZINC, IOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC SUS- PENDI RECO ERAB (UG/ AS ZI	- ED ZIN V- DI LE SOL L (UG	C, FM F S- TOM VED TEI L/L (UC	COV. BOT- CARI MA- ORG RIAL TO G/G (M	ANIC CYA TAL TO G/L (M	TO IN NIDE TOM TAL TER G/L (U	JG/G	GRE TO' REI NOLS GR ME	ASE, GRE TAL TOT COV. BOT AVI- GR TRIC ME	AND ASE, IN ANT AVI- TRIC KG)	
7-1	7-79	20		0	20	43	13	.00	0	1	0.0	0	
DATE	OXYGEI DEMANI CHEM- ICAL (HIGH LEVEL (MG/L), - P(D) SOI	CB, IS- LVED G/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL, IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
7-17-79 7-17 - 79		 10	•0	.00	0	.0	.00	.0	.000	.000	.0	 .0	.0
DATE	CHLOR DANE, TOTAL IN BOT TOM MA TERIA (UG/KG	- DDI - DIS L SOL	D, S- ÆD		DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
7-17-79 7 - 17-79	2.		 .000	.000	.4	.000	.000	.0	.000	.000	.0	.38	
	DI- AZINON, TOTAL (UG/L)	DI- AZINO TOTA IN BO TOM M TERL (UG/K)	N, L I- E A- AL S		DI- ELDRIN TOTAL	DI- ELDRIN, TOTAL IN BOT- TOM MA-	ENDO- SULFAN,	ENDO- SULFAN, TOTAL (UG/L)	ENDO- SULFAN, TOTAL	ENDRIN,	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA-	ETHION DIS- SOLVED (UG/L)
7-17-79 7-17-79	.00		.0	 •000	.000	.0	.000	.000	.0	.00	.00	•0 	.00
DATE	ETHIO TOTA (UG/	N, TOM L TE	AL 30T-	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE DIS-	EPOXIDE TOTAL	MATL.	E LINDANE 1 DIS- SOLVED	LINDANI TOTAL	TERIAL	MALA- THION DIS- SOLVED
7-17-79 7 - 17-79	_	00	.0	•000	.00	0 .0		•••			• • • •		.00
DATE	MALA THIO TOTA (UG/	MA THI TO IN I N, TOM L TE	LA- ION, IAL BOT- MA-	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	METH- OXY- CHIOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYI PARA- I THION, I DIS-	METHYI PARA- THION, TOTAL	METHYL PARA- THION, TOT. IN BOTTON MATL.	METHYL TRI- THION, DIS- SOLVED	METHYL TRI- THION, TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, DIS- SOLVED (UG/L)
7-17-79 7-17-79		00	.0		.00	.0		.00) <u></u>	.00	.0	

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 293000089451000 GRAND BAYOU NEAR HAPPY JACK, LA--CONTINUED

NATIVE SAMPLE

DATE	MIREX, TOTAL (UG/L)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, DIS- SOLVED (UG/L)		PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE, DIS- SOLVED (UG/L)	PER- THANE TOTAL (UG/L)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX - APHENE, DIS- SOLVED (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOM MA-	TRI- THION, DIS- SOLVED (UG/L)
7-17-79 7-17-79	.00	.0	 •00	.00	.0	.00	.00	.00	•0	.0	.0	.00
1-11-19			•00			•00			•0			•00
		TRI- THION,									CHLOR-A PHYTO-	CHLOR-B PHYTO-
		TOTAL									PLANK-	PLANK-
	TOTAL	IN BOT-	2,4-D,		2,4-DP		2,4,5		SILVE		TON	TON
	TRI- THION	TOM MA- TERIAL	DIS- SOLVED	2,4-D, TOTAL	DIS- SOLVED	2, 4-D	P DIS				•	CHROMO FLUOROM
DATE	(UG/L)	(UG/KG)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/					(UG/L)
7-17-79 7-17-79	•0	0 .0	.00	.14	.00	.00	.00	• • •		.00	8.56	.000

ELUTRIATE SAMPLE

DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	GEN, AM- MONIA + ORGANIC	ARSEN	DIS- D SOLVED (UG/L	CADMIU DIS-	DIS-	DIS- D SOLVI	- SID C
7-17-79	0950	380	120	.84	2.5	3.3	3	10	.2 .2,	0	•	-,
	LEAD,	MANGA- NESE,			SELE-	ZINC,	CYANIDE	10	Ů	· ·	•	CHLOR-
	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	DIS- SOLVED	PHENOLS	PCB, DIS-	PCN, DIS-	ALDRIN DIS-,	DANE, DIS-,
DATE	(UG/L AS PB)	(UG/L AS MN)	(UG/L AS HG)	(UG/L AS NI)	(UG/L AS SE)	(UG/L AS ZN)	(MG/L AS CN)	(UG/L)	SOLVED (UG/L)	SOLVED (UG/L)	SOLVED (UG/L)	SOLVED (UG/L)
7-17-79	0	560	.1	1	0	30	.01	4	.0	.0	.000	•0
DATE	DDD, DIS- SOLVED (UG/L)	DDE, DIS- SOLVED (UG/L)	DIS-	DIS-	DI- ELDRIN DIS- SOLVED (UG/L)	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDRIN, DIS- SOLVED (UG/L)	ETHION, DIS- SOLVED (UG/L)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)
7-17-79	.000	.000	.000	.06	.000	.000	.000	.00	.000	.000	.000	.00
DATE	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	PARA- THION, DIS-	METHYL TRI- THION, DIS- SOLVED (UG/L)	MIREX, DIS- SOLVED (UG/L)	PARA- THION, DIS- SOLVED (UG/L)	PER- THANE DIS- SOLVED (UG/L)	TOX- APHENE, DIS- SOLVED (UG/L)	TRI- THION DIS- SOLVED (UG/L)	DIS-	2, 4-DP DIS- SOLVED (UG/L)	2,4,5-T DIS- SOLVED (UG/L)	SILVEX, DIS- SOLVED (UG/L)
7-17-79	.00	.00	•00	.00	.00	.00	.0	.00	.02	.00	.00	.00

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, IA $293059089441900 \quad \text{MARTINS CANAL NEAR HAPPY JACK, IA}$

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
7-17-79	1020	9 570	7.2	50	<1.0	38	260000	980	890	79	190	1700
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	
7-17-79	83	105	0	86	380	3200	19	4	15	.00	.02	
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	+ ORG.		PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ı.
7-17-79	.00	.01	380	1.3	1.2	1.3	1.2	6250	1.3	.08	.13	
DATE	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)
7-17-79	2	1	1	8	10	10	0	· ND	0	ND	.88	<20
DATE	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL, RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
7-17-79	0	<20	12	0	30	26	4	31	10	6	6	ND
DATE	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, SUS- PENDED RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
7-17-79	65	170	170	<10	.1	.0	.03	3	2	<2	15	<1
DA 7 - 17		M, SEI S- NIU DED DI PAL SOI /L (UC SE) AS	M, TOI IS- IN E EVED TOM S/L TER	M, ZIM PAL TOTO FOT - REC MA - ERA UAL (UC	TAL PEN COV- REC ABLE ERA G/L (UC	US- NDED ZIM XOV- DI ABLE SOI G/L (UC	IS- ORGA LVED TOT G/L (MG ZN) AS	NIC CYAN PAL TOT G/L (MG C) AS	AL TERI	TAL SOT - MA - TAL PHEN S/G	OLS GRA	SE,

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 293059089441900 MARTINS CANAL NEAR HAPPY JACK, LA--CONTINUED

DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANF, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
7-17-79 7-17-79	 97	.0	.00	64 	.0	.00	.0	.000	.000	.0	.0	.0
DATE	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN POT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
7-17-79 7-17-79	79 	.000	.000	56 	.000	.000	3.3	.000	.000	.0	.14	
DATE	DI-	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN DIS- SOLVED (UG/L)	DI-	-AM MOT	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- SOLVED (UG/L)	ENDRIN, TOTAL (UG/L)	TOM MA-	ETHION DIS- SOLVED (UG/L)
7-17-79 7-17-79	.00	.0	.000	.000	.0	.000	.000	.0	.00	.00	.0	.00
DATE	ETHION, TOTAL (UG/L)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)		DIS- SOLVED	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	MATL.	E I LINDANE I DIS- SOLVED	LINDANE TOTAL (UG/L)	TERIAI	MALA- THION DIS- SOLVED
7-17-79 7-17-79	.00		.000	0			0					
DATE	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHIOR, DIS- SOLVED (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTON MATL. (UG/KG)	N THION, O DIS- SOLVED	METHYI PARA- THION,	TOT. IN BOTTON MATL	THION, DIS- SOLVED	METHYL TRI- THION, TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, DIS- SOLVED (UG/L)
7-17-79 7-17-79	.00	.0	.00	.00			.00			.00	.0	.00
DATE	MIREX, TOTAL	MIREX, TOTAL IN BOT- TOM MA- TERIAL	PARA- THION, DIS- SOLVED	PARA- THION, TOTAL	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL	PER- THANE, DIS- SOLVED	PER- THANE TOTAL	PER- THANE IN BOTTOM MATERIL	TOX- APHENE, DIS- SOLVED	TOX- APHENE, TOTAL	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL	TRI- THION, DIS- SOLVED
	(UG/L)	(UG/KG)	(UG/L)	(UG/L)	(UG/KG)	(UG/L)	(UG/L)	(UG/KG)	(UG/L)	(UG/L)	(UG/KG)	(UG/L)

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 293059089441900 MARTINS CANAL NEAR HAPPY JACK, LA--CONTINUED

NATIVE SAMPLE

DATE 7-17-79 7-17-79	TOTAL TRI- THION (UG/L)	0.	- 2,4-D - DIS- L SOLVE	2,4-E D TOTAL) (UG/I	SOLVEI (UG/L)	2, 4 TOTA	L SOI L) (UC	,5-T IS- 2,4,; VED TOTE 5/L) (UG,	AL SOLV. /L) (UG 0 -	S- SILA ED TOT /L) (UC	FLU G/L) (U	TO- PHYTO- NK- PLANK- N TON
						ELUTRIATI	SAMPLE					
DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)		S, ARSENIC - DIS- ED SOLVED L (UG/L	BERYL C LIUM, DIS- SOLVED (UG/L AS BE)	CADMIT DIS-	DIS- SOLVE (UG/L	, COPPER, DIS- D SOLVED (UG/L
7-17-79	1020	450	150	5.8	5.2	11		1	10	0	0	4
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVED (UG/L AS ZN)	CYANIDE DIS- SOLVED (MG/L AS CN)	PHENOLS (UG/L)	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVED (UG/L)	ALDRIN DIS-, SOLVED (UG/L)	CHLOR- DANE, DIS-, SOLVED (UG/L)
7-17-79	0	30	.1	3	0	30	.01	3	.0	.0	.000	.0
DATE	DDD, DIS- SOLVED (UG/L)		DIS- SOLVED	DI- ZINON, DIS- SOLVED (UG/L)	DI- ELDRIN S DIS- SOLVED (UG/L)	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDRIN, DIS- SOLVED (UG/L)	ETHION, DIS- SOLVED (UG/L)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)
7-17-78	.000	.000	.000	.04	.000	.000	.000	.00	.000	.000	.000	.00
	METH- CXY- CHLOR, DIS- SOLVED (UG/L)	PARA- THION, DIS- SOLVED	DIS-	MIREX, DIS-	PARA- THION, DIS- SOLVED (UG/L)	PER- THANE, DIS- SOLVED (UG/L)	TOX- APHENE, DIS- SOLVED (UG/L)	TRI- THION, DIS- SOLVED (UG/L)		2,4-DP DIS- SOLVED (UG/L)	2,4,5-T DIS- SOLVED (UG/L)	SILVEX, DIS- SOLVED (UG/L)

7-17-79 .00

.00

.00

.00

.00

.00

.0

.00

.10

.00

.00

.01

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292332089395400 BAYOU DES PLANTINS NEAR EMPIRE, LA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	
7-17-79	1145	13500	7.4	30	<1.0	95	350000	1400	1300	110	280	
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	
7-17-79	2500	99	111	0	91	600	4300	59	39	20	.00	
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO GEN, AMMONIA TOTAL (MG/L AS N)	AMMONIA	GEN,NH A TOTAL IN BOT	4 NITRO GEN, ORGANIO TOTAL	ORGANIC C DIS- SOLVEI	GEN,AM MONIA ORGANI	- GEN, + MONI C ORGA DIS	AM- GEN, A + + OF NIC TOT B BOT G/L (MC	KG. IN MAT G/KG		
7-17-79	.02	.16	.06	280	2.0	.21	2.2	.2	.7 49	000		
DATE	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, SUS- PENDED RECOV. (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLF (UG/L AS CD)
7-17-79	2.2	.10	.03	3	2	1	6	20	0	20	0	ND
DATE	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	
7-17-79	0	ND	.66	20	10	0	12	0	12 00,	15	2	
DATE	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L	
7-17-79	16	20	72	71	2	20	270	260	10	250	.1	
D	MER D SO (U ATE AS	MER RED CURY FM: IS- TOM IVED TE G/L (U HG) AS	CURY COV. NIC BOT- TO MA- RE RIAL ER G/G (U HG) AS	NIC KEL, S TAL PE COV- RE ABLE ER G/L (U NI) AS	KEL, US- NDED NIC COV- DI ABLE SO G/L (U	NICI REX KEL, FM I S- TOM LVED TEI G/L (UK	KEL, COV. BOT- SE MA- NI RIAL TO G/G (U NI) AS	SE S	CLE- CUM, SE CUS- NI CINDED I OTAL SC CIG/L (U C SE) AS	SELE- NI IUM, TO DIS- IN DIVED TOM	ELE- IUM, DTAL BOT- 1 MA- RRIAL G/G)	

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA
292332089395400 BAYOU DES PLANTINS NEAR EMPIRE, LA--CONTINUED
NATIVE SAMPLE

1	TO RI EI (1	OTAL PE ECOV- RE RABLE ER UG/L (U	US- NDED ZIN COV- DI ABLE SOI G/L (UC	ZIN RECO IC, FM B IS- TOM I IVED TER G/L (UG ZN) AS	OV. OT- CARE MA- ORGA LIAL TOTA L/G (MC	ANIC CYAN TAL TOT G/L (MC	TO: IN I JIDE TOM PAL TER: G/L (U	G/G	REC POLS GRA	ASE, GREATAL TOT COV. BOT AVI- GR TRIC ME		
7-	17-79	40	10	30	47	13	.00	0	0	0	0	
DATE	OXYGEN DEMAND CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
7-17-79 7-17-79	 210	.0	.00	0	 •0	.00	.0		.000	.0 		.0
DATE	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
7-17 - 79 7-17 - 79	1.0	.000	.000	.6	 •000	.000	.0	.000	.000	.0 	 .06	
DATE	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN DIS- SOLVED (UG/L)	DI- I ELDRIN T TOTAL	OM MA- TERIAL S	ENDO- SULFAN, DIS- S SOLVED (UG/L)	ENDO- SULFAN, '	ENDO- SULFAN, TOTAL IN BOT- I TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- I SOLVED (UG/L)	ENDRIN,	TOM MA- TERIAL S	ETHION DIS- SOLVED (UG/L)
7-17-79	AZINON, TOTAL	AZINON, TOTAL IN BOT- TOM MA- TERIAL	ELDRIN DIS- SOLVED (UG/L)	DI- I ELDRIN T TOTAL	ILDRIN, TOTAL IN BOT- S OM MA- TERIAL S	SULFAN, DIS- S SOLVED (UG/L)	ENDO- SULFAN, '	SULFAN, TOTAL IN BOT- I TOM MA- TERIAL	DIS- I SOLVED (UG/L)	ENDRIN,	TOTAL, IN BOT- I TOM MA- TERIAL S	DIS- SOLVED (UG/L)
	AZINON, TOTAL (UG/L)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) -0 ETHION, TOTAL , TOM MA- TERIAL	ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHLOR, DIS-	DI- I ELDRIN T TOTAL (UG/L) (ELDRIN, TOTAL IN BOT- S OM MA- TERIAL S UG/KG)	SULFAN, DIS- SOLVED (UG/L)000 HEPTA- CHLOR EPOXIDE DIS-	ENDO- SULFAN, TOTAL (UG/L)	SULFAN, TOTAL IN BOT- II TOM MA- TERIAL (UG/KG) .0 HEPTA- CHIOR EPOXIDE TOT, IN	DIS- I SOLVED (UG/L)	ENDRIN, TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANE TOTAL IN BOT-	DIS- SOLVED (UG/L) .00 MALA- THION DIS-
7-17-79 7-17-79 DATE 7-17-79	AZINON, TOTAL (UG/L) .00 ETHION TOTAL	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 ETHION, TOTAL IN BOT- , TOM MA- TERIAL) (UG/KG)	ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHLOR, DIS- SOLVED (UG/L)	DI- I ELDRIN TOTAL (UG/L) (.000 HEPTA-CHLOR, TOTAL	LIDRIN, TOTAL N BOT- OM MA- TERIAL UG/KG) .0 HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL	SULFAN, DIS- SECUVED (UG/L)	ENDO- SULFAN, TOTAL (UG/L) .000 HEPTA- CHIOR EPOXIDE TOTAL	SULFAN, TOTAL IN BOT- IT TOM MA- TERIAL (UG/KG) .0 HEPTA- CHIOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	DIS- I SOLVED (UG/L)00	ENDRIN, TOTAL (UG/L) .00 LINDANE TOTAL	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DIS- SOLVED (UG/L) .00 MALA- THION DIS- SOLVED (UG/L)
7-17-79 7-17-79 DATE	AZINON, TOTAL (UG/L) .00 ETHION TOTAL (UG/L)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 .0 ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHLOR, DIS- SOLVED (UG/L)000 METH- OXY- CHLOR, DIS-	DI- I ELDRIN T TOTAL (UG/L) (.000 HEPTA- CHLOR, TOTAL (UG/L) .000	ELDRIN, TOTAL IN BOT- OM MA- TERIAL SUG/KG) HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0	SULFAN, DIS- SOLVED (UG/L) 000 HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	ENDO- SULFAN, TOTAL (UG/L) .000 HEPTA- CHIOR EPOXIDE TOTAL (UG/L) .000	SULFAN, TOTAL IN BOT- IN BOT- TERIAL (UG/KG) .0 HEPTA- CHIOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) .0 .0 METHYL PARA-	DIS- I SOLVED (UG/L)00 LINDANE DIS- SOLVED (UG/L)	ENDRIN, TOTAL (UG/L) .00 LINDANE TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0	DIS- SOLVED (UG/L) .00 MALA- THION DIS- SOLVED (UG/L)

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292332089395400 BAYOU DES PLANTINS NEAR EMPIRE, LA--CONTINUED

DATE	MIREX, TOTAL (UG/L)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, DIS- SOLVED (UG/L)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE, DIS- SOLVED (UG/L)	PER- THANE TOTAL (UG/L)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX- APHENE, DIS- SOLVED (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA-PHENE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG	
7-17-79 7-17 - 79	.00	.0 	.00	.00	.0 	.00	.00		.0	.0	.0	.00
DATE	TOTAL TRI- THION (UG/L)	TRI- THION TOTAL IN BOT TOM MA TERIA (UG/KG	- 2,4-D, - DIS- L SOLVEI	2,4-D TOTAL	SOLVEI	2, 4 TOTA	L SOI	,5-T IS- 2,4,; WED TOTA G/L) (UG,	AL SOLV	S-SILVED TO	TAL FLUC	TO- PHYTO- IK- PLANK- I TON IMO CHROMO
7-17-79 7-17-79	.00						00	.00	.00	.00	.00 3	9.3 .000
						ELUTI	RIATE SAM	PLE				
DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS-	S, ARSENIO - DIS- ED SOLVED L (UG/L	BERYI C LIUM, DIS- SOLVEI (UG/L AS BE)	CADMIU DIS- SOLVEI (UG/L	DIS- SOLVEI (UG/L	DIS- SOLVED (UG/L
7-17-79	1145	520	180					- 2	C) () () 3
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVEI (UG/L AS ZN)	(MG/L	PHENOLS (UG/L)	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVED (UG/L)	ALDRIN DIS-, SOLVED (UG/L)	CHLOR- DANE, DIS-, SOLVED (UG/L)
7-17-79	0	80	0.1	2	0	30	.01	9	.0	.0	.000	.0
DATE	DDD, DIS- SOLVED (UG/L)	DDE, DIS- SOLVED (UG/L)	DIS- SOLVED S	DIS-	DI- ELDRIN : DIS- SOLVED (UG/L)	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDRIN, DIS- SOLVED (UG/L)	ETHION, DIS- SOLVED (UG/L)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	LINDANF DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)
7-17-79	.000	.000	.000	.03	.000	.000	.000	.00	.000	.000	.000	.00
	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	PARA- THION, DIS-	DIS- SOLVED	MIREX, DIS-	PARA- THION, DIS- SOLVED (UG/L)	PER- THANE DIS- SOLVED (UG/L)	TOX- APHENE, DIS- SOLVED (UG/L)	TRI- THION DIS- SOLVED (UG/L)	2,4-D, DIS- SOLVED (UG/L)	2, 4-DP DIS- SOLVED (UG/L)	2,4,5-T DIS- SOLVED (UG/L)	SILVEX, DIS- SOLVED (UG/L)
7-17-79	.00	•00	.00	.00	.00	.00	.0	•00	•00	.00	.00	.00

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, IA 292650089400400 PIPELINE CANAL NEAR PORT SULPHUR, LA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
7-17-79	1210	13200	7.5	30	<1.0	110	86000	1400	1300	110	270	2400
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO GEN, AMMONI, TOTAL (MG/L AS N)	AMMONI A DIS- SOLVE	ZA ZD
7-17-79	100	105	0	86	570	4100	13	.03	.02	.11	.04	
DATE	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	
7-17 - 79	390	1.1	.83	1.2	.87	5700	1.3	.06	.040	1	1	
DATE	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)
7-17-79	1	8	10	10	0	ND	0	ND	.89	20	10	ND
DATE	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
7-17-79	13	0	8	8	ND	20	20	8	8	ND	25	120
DATE	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, SUS- PENDED RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SEIE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)
7-17-79	120	10	360	•2	.2	.03	3	2	2	20	1	o
DATE 7-17-79	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN)	PHENOLS (UG/L) 0	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)	OII, AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)
, _, ,,	-	9	50	10	20	04		•00	J	J	J	J

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292650089400400 PIPELINE CANAL NEAR PORT SULPHUR, LA--CONTINUED

DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
7-17-79 7-17-79	210	.0	.00	0	.0	.00	.0	.000	.000	.0	.0	.0
DATE	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
7-17-79 7-17-79	6.0 	.000	.000	2.6	.000	.000	1.8	.000	.000 	.0	.05	
DATE	DI-	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI - ELDRIN DIS- SOLVED (UG/L)	DI- ELDRIN '	TOM MA-	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDO-	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- SOLVED (UG/L)		ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION DIS- SOLVED (UG/L)
7-17-79 7-17-79	•00	.0	.000	.000	.0	.000	.000	.0	.00	.00	.0	.00
					HEPTA-			HEPTA-				
DATE	ETHION, TOTAL (UG/L)	TERI AL	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	CHLOR, TOTAL	DIS-	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	CHLOR EPOXIDE TOT. IN BOTTOM MATL.	LINDANE	LINDANE TOTAL (UG/L)	TERIAI	MALA- THION DIS- SOLVED
DATE 7-17-79 7-17-79	TOTAL	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR, DIS- SOLVED	CHLOR, TOTAL	CHLOR, TOTAL IN BOT- TOM MA- TERIAL	CHLOR EPOXIDE DIS- SOLVED (UG/L)	CHLOR EPOXIDE TOTAL (UG/L)	CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE DIS- SOLVED	LINDANE TOTAL	TOTAL IN BOT- TOM MA- TERIAI	MALA- THION DIS- SOLVED
7-17-79	TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL	CHLOR, DIS- SOLVED (UG/L)	CHLOR, TOTAL (UG/L)	CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR EPOXIDE DIS- SOLVED (UG/L)000 METHYL PARA- THION, DIS-	CHLOR EPOXIDE TOTAL (UG/L)	CHLOR EPOXIDE TOT. IN E BOTTOM MATL. (UG/KG) .0 .0 METHYL PARA- THION, TOT. IN BOTTOM MATL.	LINDANE DIS- SOLVED (UG/L)000 METHYL TRI- THION,	LINDANE TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	MALA- THION DIS- SOLVED (UG/L)
7-17-79 7-17-79	TOTAL (UG/L) .00 MALA- THION,	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0	CHLOR, DIS- SOLVED (UG/L) .000 METH- OXY- CHLOR, DIS- SOLVED	CHLOR, TOTAL (UG/L) .000 METH- OXY- CHLOR, TOTAL	CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 METH- OXY- CHLOR, TOT. IN BOTTOM MATL.	CHLOR EPOXIDE DIS- SOLVED (UG/L)000 METHYL PARA- THION, DIS- SOLVED (UG/L)	CHLOR EPOXIDE TOTAL (UG/L) .000 METHYI PARA- THION, TOTAL (UG/L)	CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) .0 METHYI. PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	LINDANE DIS- SOLVED (UG/L)000 METHYL TRI- THION, DIS- SOLVED (UG/L)	LINDANE TOTAL (UG/L) .000 METHYL TRI- THION, TOTAL	TOTAL IN BOTT TOM MA- TERIAL (UG/KG) .0 METHYL TRI- THION, TOT. IN BOJITOM MATL.	MALA- THION DIS- SOLVED (UG/L)00 MIREX, DIS- SOLVED
7-17-79 7-17-79 DATE 7-17-79	MALA-THION, TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0	CHLOR, DIS-SOLVED (UG/L) METH-OXY-CHLOR, DIS-SOLVED (UG/L) 000	CHIOR, TOTAL (UG/L) .000 METH-OXY-CHIOR, TOTAL (UG/L) .00 PARA-THION, TOTAL	CHLOR, TOTAL IN BOTT- TOM MA- TERIAL (UG/KG) .0 METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	CHLOR EPOXIDE DIS- SOLVED (UG/L) .000 METHYL PARA- THION, DIS- SOLVED (UG/L)	CHLOR EPOXIDE TOTAL (UG/L) .000 METHYI PARA- THIONAL (UG/L) .00	CHLOR EPOXIDE TOT. IN MATL. (UG/KG) .0 METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) .0 .0	LINDANE DIS- SOLVED (UG/L)000 METHYL TRI- THION, DIS- SOLVED (UG/L)00 TOX- APHENE,	LINDANE TOTAL (UG/L) .000 METHYL TRIC THION, TOTAL (UG/L) .00	TOTAL IN BOT- IN BOT- TOM MA- TERIAI (UG/KG) .0 METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MALA- THION DIS- SOLVED (UG/L) MIREX, DIS- SOLVED (UG/L)

TABLE 7.--WATER-QUALITY DATA, NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LA 292650089400400 PIPELINE CANAL NEAR PORT SULPHUR, LA--CONTINUED

NATIVE SAMPLE

DATE 7-17-79 7-17-79	TOTAL TRI- THION (UG/L)		7. 2,4-D C- 2,4-D A- DIS- AL SOLVE G) (UG/L	2,4-D D TOTAL) (UG/L	SOLVED) (UG/L) 2	2, 4- TOTAI (UG/I	SOLV (UG/	S- 2,4,5 /ED TOTA /L) (UG/ 0	L SOLVI L) (UG,	S- SILVE ED TOTA /L) (UG/	L FLUOI L) (UG,	O- PHYTO- C- PLANK- TON CHROMO ROM FLUOROM (UG/L) .9 .000
DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, DIS- SOLVEI (MG/L AS P)	DIS-	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOIMED (UG/L AS CU)
7-17-79	1210	510	160					5	0	1	0	3
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVEI (UG/L AS MN)	MERCUR DIS- D SOLVED (UG/L	DIS-	DIS-	ZINC, DIS- SOLVEI (UG/L AS ZN)	(MG/L	PHENOLS (UG/L)	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVED (UG/L)	ALDRIN DIS-, SOLVED (UG/L)	CHLOR- DANE, DIS-, SOLVED (UG/L)
7-17-79	1	130	0.1	3	0	30	.00	13	.0	.0	.000	.0
DATE	DDD, DIS- SOLVED (UG/L)	DDE, DIS- SOLVED (UG/L)	DDT, DIS- SOLVED (UG/L)	DI- AZINON, DIS- SOLVED (UG/L)	DI- ELDRIN DIS- SOLVED (UG/L)	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDRIN, DIS- SOLVED (UG/L)	ETHION, DIS- SOLVED (UG/L)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)
7-17-79	.000	.000	.000	.05	.000	.000	.000	.00	.000	.000	.000	.00
DATE	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	METHYL PARA- THION, DIS- SOLVED (UG/L)	METHYL TRI- THION, DIS- SOLVED (UG/L)	MIREX, DIS-	DIS-	PER- THANE A DIS- SOLVED (UG/L)	TOX- APHENE, DIS- SOLVED (UG/L)	DIS-	DIS- SOLVED :	2, 4-DP 2 DIS- SOLVED (UG/L)	2,4,5-T DIS- SOLVED (UG/L)	SILVEX, DIS- SOLVED (UG/L)

.00

.0

.00

.00

.00

.00

.00

7-17-79 .000

.00

.00

.00

.00

TABLE 8.--WATER-QUALITY DATA, BARATARIA BAY 291511089551200 GULF OF MEXICO 300 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE -0.9, AT GRAND ISLF, LA NATIVE SAMPLE

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
10-18-79	1200	38800	8.3	5	<1.0	880	67000	5200	5100	280	1100
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	AS	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
10-18-79	8300	410	142	0	116	2100	15000	48	28	20	.01
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	AMMONIA	GEN, NH4 TOTAL IN BOTA	NITRO- GEN,	ORGANI C DIS- SOLVE	GEN, AM C MONIA ORGANI D TOTAL (MG/L	H GEN, H MONI C ORGA DIS	A + + OR NIC TOT B BOT MG/L (MG	NH4 :G. IN MAT :/KG	
10-18-79	.02	.11	.01	75	.42	.38	.53		39 79	40	
	NITRO- GEN, TOTAL (MG/L	PHOS- PHORUS, TOTAL (MG/L	PHOS- PHORUS, DIS- SOLVED (MG/L	ARSENIC TOTAL (UG/L	ARSENIC SUS- PENDED TOTAL (UG/L	ARSENIC DIS- SOLVED (UG/L	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L	BERYL- LIUM, DIS- SOLVED (UG/L	RECOV. FM BOT- TOM MA- TERIAL	CADMIUM TOTAL RECOV- ERABLE (UG/L
DATE	AS N)	AS P)	AS P)	AS AS)	AS AS)	AS AS)	AS AS)	AS BE)	AS BE)		AS CD)
10-18-79 DATE	.56 CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR)	CHRO-MIUM, SUS-PENDED RECOV. (UG/L AS CR)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	CHRO-MIUM, HEXA-VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)
10-18-79	0	1	.11	30	20	10	8	0	ND	0	ND
DATE	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANCA- NESE, RFCOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)
10-18-79	13	130	15	15	ND	20	50	30	20	490	.0
	E SC (U DATE AS	REX CCURY FM I DIS- TOM DIVED TE I G/L (U G HG) AS	COV. NICE BOT- TO: MA- REX RIAL ER G/G (UX HG) AS	KEL, SI FAL PE COV- RE ABLE ER G/L (U NI) AS	COV- DI ABLE SO G/L (U NI) AS	REL, FM KEL, FM S- TOM LVED TE G/L (U NI) AS	MA- NI RIAL TO G/G (U S NI) AS	NI ELE- S IUM, PE OTAL TO UG/L (U S SE) AS	SUS- NI ENDED I OTAL SO UG/L (U S SE) AS	CLE- NICOM, TO DIS- IN DLVED TOM DG/L TI G SE) (U	CLE- CUM, DTAL BOT- 1 MA- CRIAL UG/G)

TABLE 8.--WATER-QUALITY DATA, BARATARIA BAY
291511089551200 GULF OF MEXICO 300 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE -0.9, AT GRAND ISLE, LA--CONTINUED
NATIVE SAMPLE

Ι	7 F F	ZINC, S TOTAL PE RECOV- RE ERABLE ER (UG/L (U	ABLE SOI	REANC, FM I IS- TOM LVED TE G/L (U	MA- ORG RIAL TO G/G (M	TAL TO	TO IN NIDE TOM TAL TER G/L (U	INIDE PTAL BOT- I MA- UAL PHEN IG/G CN) (U	GRE TO RE VOLS GR ME	ASE, GRE TAL TOI COV. BOI AVI- GR TRIC ME	AND CASE, IN MAT CAVI- TRIC S/KG)	
10-1	18-79	30	10	20	43	8.6	.00	130	1	1	0	
DATE	OXYGEN DEMANI CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
10-18-79			.00	7		.00	.0		.000	.0		.0
10-18-79	800	.0			.0			.000			.0	
DATE	CHIOR- DANE, TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	DDD, DIS- SOLVED	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
10-18-79	.0		.000	.8		.000	.1		.000	.0		
10-18-79		.000			.000			.000			.01	
DATE	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN DIS- SOLVED	DI- ELDRIN '	TOM MA- TERIAL	SOLVED	ENDO- SULFAN, TOTAL	TOM MA- TERIAL	SOLVED	ENDRIN, TOTAL	TOM MA- TERIAL	ETHION DIS- SOLVED
DATE 10-18-79	AZINON,	AZINON, TOTAL IN BOT- TOM MA-	ELDRIN DIS-	DI- ELDRIN '	ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	SULFAN, DIS-	ENDO- SULFAN,	SULFAN, TOTAL IN BOT- I TOM MA-	DIS-	ENDRIN,	TOTAL IN BOT- TOM MA-	DIS-
	AZINON, TOTAL (UG/L)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ELDRIN DIS- SOLVED	DI- ELDRIN TOTAL (UG/L)	ELDRIN, TOTAL IN BOT- TOM MA- TERIAL	SULFAN, DIS- SOLVED	ENDO- SULFAN, TOTAL (UG/L)	SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DIS- SOLVED (UG/L)	ENDRIN, TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DIS- SOLVED (UG/L)
10-18-79	AZINON, TOTAL (UG/L)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 ETHION, TOTAL IN BOT- N, TOM MA-	ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHLOR, DIS-	DI- ELDRIN TOTAL (UG/L)	ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .2 HEPTA- CHLOR, TOTAL	SULFAN, DIS- SOLVED (UG/L)000 HEPTA- CHLOR EPOXIDE DIS- SOLVED	ENDO- SULFAN, TOTAL (UG/L) .000	SULFAN, TOTAL IN BOT- IT TOM MA- TERIAL (UG/KG) HEPTA- CHLOR FPOXIDE TOT. IN	DIS- SOLVED (UG/L)	ENDRIN, TOTAL (UG/L) .00	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANI TOTAL IN BOT-	DIS-SOLVED (UG/L)00 E MAIA THION - DIS- L SOLVED
10-18-79 10-18-79 DATE 10-18-79	AZINON, TOTAL (UG/L) .00 ETHION TOTAL (UG/I)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 ETHION, TOTAL IN BOT- TOM MA- TERIAL L) (UG/KG)	ELDRIN DIS- SOLVED (UG/L) 000 HEPTA- CHLOR, DIS- SOLVED (UG/L)	DI- ELDRIN TOTAL (UG/L) .000	ELDRIN, TOTAL IN BOT- TOM MA- TERTAL (UG/KG) .2 HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	SULFAN, DIS- SOLVED (UG/L) 000 HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	ENDO- SULFAN, TOTAL (UG/L) .000 HEPTA- CHLOR EPOXIDE TOTAL	SULPAN, TOTAL IN BOT- IT TOM MA- TERIAL (UG/KG) .0 HEPTA- CHIOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	DIS- SOLVED (UG/L) .00 LINDANE DIS- SOLVED (UG/L)	ENDRIN, TOTAL (UG/L) .00 LINDANE TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANE TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	DIS- SOLVED (UG/L) 00 E MAIA THION - DIS- L SOLVED (UG/L) 0
10-18-79 10-18-79 DATE	AZINON, TOTAL (UG/L) .00 ETHION TOTAL (UG/I)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .	ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHLOR, DIS- SOLVED (UG/L)000 METH- OXY- CHLOR, DIS-	DI- ELDRIN TOTAL (UG/L) .000 HEPTA- CHLOR, TOTAL (UG/L) .000	ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .2 HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	SULFAN, DIS- SOLVED (UG/L)000 HEPTA- CHIOR EPOXIDE DIS- SOLVED (UG/L)000 METHYL PARA- HION, DIS- SOLVED SOLVED SOLVED	ENIDO- SULFAN, TOTAL (UG/L) .000 HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	SULFAN, TOTAL IN BOT- I TOM MA- TERIAL (UG/KG) .0 HEPTA- CHIOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	DIS- SOLVED (UG/L)00 LINDANE DIS- SOLVED (UG/L)	ENDRIN, TOTAL (UG/L) .00 LINDANE TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DIS- SOLVED (UG/L) 00 E MAIA- THION DIS- SOLVED (UG/L)

TABLE 8.--WATER-QUALITY DATA, BARATARIA BAY
291511089551200 GULF OF MEXICO 300 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE -0.9, AT GRAND ISLE, LA--CONTINUED
NATIVE SAMPLE

DATE	MIREX, TOTAL (UG/L)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, DIS- SOLVED (UG/L)		PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE, DIS- SOLVED (UG/L)	PER- THANE	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX- APHENE, DIS- SOLVED (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG	TRI- THION, DIS- SOLVED) (UG/L)
10-18-79 10-18-79	.00	.0		.00	.0		.00	.00		.0	:	
DATE	TOTAL TRI- THION (UG/L)	TRI - THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	.01 2,4-D, DIS- SOLVED (UG/L)	2,4-D, TOTAL (UG/L)	2,4-DP DIS- SOLVED	.00 2, 4-1 TOTAL (UG/L	2,4,5- DP DIS- SOLVE	-T - 2,4,5 ≊D TOTA	L SOLVE	X, - SILVI	CHLOR PHYT PLAN TON EX, CHRO	-A CHILOR-B O- PHYTO- K- PLANK- TON MO CHROMO
10-18-79	.00	.0		.00		.0			00		.00 6	.80 .000
10-18-79			.02		.00	-	(00	,	.00		
					ELUT	RIATE SA	MPLE					
			OXYGEN	NITRO-								
DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	ARSENIC DIS- SOLVED (UG/L AS AS)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVEI (UG/L AS CU)	DIS- SOLVE (UG/L	_	
10-18-79	1200	440	870	4.2	2	0	1	16)	0	
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS-	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	DIS-	CYANIDE DIS- SOLVED (MG/L AS CN)	PHENOLS (UG/L)	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVED (UG/L)	ALDRIN DIS-,	CHLOR- DANE, DIS-, SOLVED (UG/L)	DDD, DIS- SOLVED (UG/L)
10-18-79	3000	.0	.0	.0	20	.00	2	.0	.0	.000	.0	.000
	DDE, DIS- SOLVED (UG/L)	DIS-	DI- ZINON, DIS- SOLVED (UG/L)	DI- ELDRIN S DIS- SOLVED (UG/L)	ENDO- SULFAN, I DIS- SOLVED (UG/L)	ENDRIN, DIS- SOLVED (UG/L)	ETHION DIS- SOLVED (UG/L)	HEPTA- CHLOR- DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)	METH- OXY- CHLOR, DIS- SOLVED (UG/L)
10-18-79	.000	.000	.02	.000	.000	.000	.00	.000	.000	.000	.00	.00
DATE	METHY PARA- THION DIS- SOLVE (UG/L	TRI- THION, DIS- D SOLVEI	MIREX, DIS- SOLVEI	DIS- SOLVE	DIS- D SOLVEI		DIS- D SOLVE	DIS- D SOLVE	DIS-	DIS D SOLV	- DIS	S- TED

.00 .0 .00

10-18-79

.00

.00

.00

.00

.01 .00 .01

.00

TABLE 8.--WATER-QUALITY DATA, BARATARIA BAY
291608089571500 GULF OF MEXICO 900 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE 0.8, AT GRAND ISLE, LA
NATIVE SAMPLE

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE UMHOS) (1	PH (INUM- COBALT		DE TLE- C BLE I PTER (VL/ LE	MAND, T HEM- CAL BO HIGH WEL) TI	OTTOM 1 MA- ERIAL	HARD- I NESS NO (MG/L BO AS	ONCAR- DI ONATE SO (MG/L (1	LCIUM S IS- I OLVED SO MG/L (I	AGNE- SIUM, DIS- DLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
7- 8-81	1000	17700	8.0	5	3.0 <	1.0	700	16000	1900	1800	150	380	3100
DATE	POTAS- SIUM, DIS- SOLVEI (MG/L AS K)	LINITY FIELD	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)		
7- 8-81	100	98	790	5800	9	2	7	.03	.04	.27	.22		
D.MT	NITRO- GEN, NH4 TOTAL IN BOT. MAT. (MG/KG	NITRO- GEN, ORGANIC TOTAL (MG/L	ORGANIC DIS- SOLVED (MG/L	ORGANIC TOTAL (MG/L	NITRO- GEN, NH- + ORG. TOT IN BOT MA' (MG/KI)	NITRO GEN, I TOTAL G (MG/I	PHORUS TOTAL (MG/)	S, DIS L SOLV! L (MG/	S, - ARSEN ED TOTA L (UG/	L TOTAL L (UG/L	D		
DATE	AS N)	AS N)	AS N)	AS N)	AS N)	AS N)	AS P) AS P) ASA	S) AS AS)		
7- 8-81	ARSENIC DIS- SOLVEI	TOM MA-	LIUM, TOTAL RECOV- ERABLE		RECOV. FM BOT- TOM MA-	CADMIUM TOTAL RECOV- ERABLE	CADMIUM CADMIUM DIS- SOLVE	CADMIUM RECOVI M FM BOTH TOM MA- D TERIAL	M CHRO- MIUM, TOTAL RECOV L ERABLE	CHRO- MIUM, SUS- - PENDED	CHRO- MIUM, DIS- SOLVED		
DATE	(UG/L AS AS)	(UG/G AS AS)	(UG/L AS BE)	(UG/L AS BE)	TERIAL (UG/G)	(UG/L AS CD)	(UG/L AS CD)	(UG/G (ASCD)			(UG/L AS CR)		
7- 8-81		·	·	-		1		0.0					
DATE	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAI (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV-	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS-	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)		
7- 8-81	c	0	4	1	3	5	50	8	3	5	5		
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, SUS- PENDED RECOV. (UG/L	MANGA- NESE,	RECOV. FM BOT-	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	TOM MA- TERIAL (UG/G	SELE- NIUM, TOTAL (UG/L AS SE)		
7- 8-81	40	20	20	160	.3	.4	.03	2	4	10	0		
	SELE- NIUM, SUS- PENDEI TOTAL (UG/L	SOLVED (UG/L	TERIAL		ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G	CARBON, ORGANIC TOTAL (MG/L	CYANIDE TOTAL (MG/L	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G	PHENOLS	GREASE, TOTAL RECOV. GRAVI- METRIC	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC		
DATE	AS SE)	AS SE)	(UG/G)	AS ZN)	AS ZN)	AS C)	AS CN)	AS CN)	(UG/L)	(MG/L)	(MG/KG)		
7- 8-81	() 0	0	30	31	7.2	.00	0	1	. 0	0		

TABLE 8.--WATER-QUALITY DATA, BARATARIA BAY
291608089571500 GULF OF MEXICO 900 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE 0.8, AT GRAND ISLE, LA--CONTINUED
NATIVE SAMPLE

DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	
7- 8-81 7- 8-81	830	<.1	<.10	<1 	<.1	<.10 	<1.0 	<.00	<.00	<.1 	<.1	
DATE	CHLOR- DANE, TOTAL (UG/L)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)
7- 8-81 7- 8-81	<.1 	<1.0	 <.001	<.001 	<.1 	<.001	<.001	<.1 	<.001	<.001 	<.1 	.04
DATE	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN DIS- SOLVED (UG/L)	DI - ELDRIN TOTAL (UG/L)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- SOLVED (UG/L)	ENDRIN, TOTAL (UG/L)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION DIS- SOLVED (UG/L)
7- 8-81 7- 8-81	<.01 	<.1	 <.001	<.001	.1 	<.001	<.001	<.1	<.001	<.001	<.1 	<.01
DATE	ETHION, TOTAL (UG/L)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE TOTAL	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	LINDANE DIS- SOLVED (UG/L)	LINDANE TOTAL (UG/L)	I.INDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION DIS-
7- 8-81 7- 8-81	<.01	_					(UG/L)	(00, 110)	(, -,	, - ,	(00)110)	
		<.1 	<.001	<.001	<.1 	<.001	<.001 	<.1 	 <.001	<.001	<.1 	<.01
DATE	MALA- THION, TOTAL (UG/L)		<.001 METH- OXY- CHLOR, DIS-			<.001 METHYL PARA- THION, DIS- SOLVED (UG/L)	<.001	<.1		<.001 METHYL TRI- THION, TOTAL	<.1	
DATE 7- 8-81 7- 8-81	MALA- THION, TOTAL	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	<.001 METH- OXY- CHLOR, DIS- SOLVED	METH- OXY- CHLOR, TOTAL	METH- OXY- CHLOR, TOT. IN BOTTOM MATL.	METHYL PARA- THION, DIS- SOLVED	<.001 METHYL PARA- THION, TOTAL	<.1 PARA- THION, TOT. IN BOTTOM MATL.	<.001 METHYL TRI- THION, DIS- SOLVED	<.001 METHYL TRI- THION, TOTAL	<.1 METHYL TRI- THION, IOT. IN BOTTOM MATL.	<.01 MIREX, DIS- SOLVED
7- 8-81	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	<.001 METH- OXY- CHLOR, DIS- SOLVED (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METH-OXY-CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION, DIS- SOLVED (UG/L)	<.001 METHYL PARA- THION, TOTAL (UG/L) <.01 PER- THANE TOTAL	<.1 METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) <.1 PER- THANE	<.001 METHYL TRI- THION, DIS- SOLVED (UG/L) <.01 TOX- APHENE,	<.001 METHYL TRI- THION, TOTAL (UG/L) <.01 TOX- APPHENE, TOTAL	<.1 METHYL TRI- THION, IOT. IN BOTTOM MATL. (UG/KG) <.1 TOXA- PHENE, TOTAL IN BOT- IOM MA- TERIAL	MIREX, DIS- SOLVED (UG/L)

TABLE 8.--WATER-QUALITY DATA, BARATARIA BAY

291608089571500 GULF OF MEXICO 900 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE 0.8, AT GRAND ISLE, LA--CONTINUED
NATIVE SAMPLE

DATE	TOTAL TRI- THION (UG/L)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2,4-D, DIS- SOLVED (UG/L)	2,4-D, TOTAL (UG/L)	2,4-DP DIS- SOLVED (UG/L)	2, 4-DF TOTAL (UG/L)	2,4,5-1 P DIS- SOLVEI (UG/L)	2,4,5-1 TOTAL (UG/L)	SOLVE (UG/L	SILVEX D TOTAL) (UG/L)	FLUORO (UG/I	O- PHYTO- K- PLANK- TON O CHROMO OM FLUOROM L) (UG/L)
7- 8-81 7- 8-81	<.01 	<.1 	<.01	<.01 		<.01 	<.0	1,03				.5 .000
DATE SAM	PLE					В	OTTOM MATT	ERIAL PAR	ricle siz	E		
JUL , 1981 08 A 08 B 08 C	% FINE	ETER (MM) R BY WEIGH R BY WEIGH R BY WEIGH	Т	1.00 96.5 97.5 99.0	96.0 9 96.5 9	0.25 0.1 0.5 37.0 5.0 28.0 3.5 62.0	0 2.0	0.033 2.0	0.016 	0.008 	0.004 	0.002 0.001
					ELU	TRIATE SA	MPLE-A					
DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)		DIS- D SOLVED	BERYI C LIUM, DIS- SOLVEI (UG/L AS BE)	CADMIU DIS- SOLVED (UG/L	DIS-	, COPPER, DIS- D SOLVED (UG/L
7- 8-81	1000	225	720	2.2	1.2	3.4	.08	3	10	1	30	2
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVED (UG/L AS ZN)	CYANIDE DIS- SOLVED (MG/L AS CN)	PHENOLS (UG/L)	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVED (UG/L)	ALDRIN DIS-, SOLVED (UG/L)	CHLOR- DANE, DIS-, SOLVED (UG/L)
7- 8-81	0	20	.1	2	0	50	.00	4	<.1	<.1	<.001	<.1
DATE	DDD, DIS- SOLVED (UG/L)	DDE, DIS- SOLVED (UG/L)	DIS-	DI- ZINON, DIS- SOLVED (UG/L)	DI- ELDRIN DIS- SOLVED (UG/L)	ENDO- SULFAN, DIS- SOLVED (UG/L)	FNDRIN, DIS- SOLVED (UG/L)	ETHION, DIS- SOLVED (UG/L)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)
7- 8-81	<.001	<.001	<.001	.03	.001	<.001	<.001	<.01	<.001	<.001	<.001	<.01
	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	PARA- THION, DIS-	METHYL TRI- THION, DIS- SOLVED (UG/L)	MIREX, DIS- SOLVED (UG/L)	PARA- THION, DIS- SOLVED (UG/L)	PER- THANE DIS- SOLVED (UG/L)	TOX- APHENE, DIS- SOLVED (UG/L)	TRI- THION DIS- SOLVED (UG/L)	2,4-D, DIS- SOLVED (UG/L)	2, 4-DP DIS- SOLVED (UG/L)	2,4,5-T DIS- SOLVED (UG/L)	SILVEX, DIS- SOLVED (UG/L)
7 - 8-81	<.01	<.01	<.01	<.01	<.01	<.01	<.1	<.01	<.01	<.01	<.01	<.01

TABLE 8.--WATER-QUALITY DATA, BARATARIA BAY

291608089571500 - GULF OF MEXICO 900 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE 0.8, AT GRAND ISLE, LA--CONTINUED ELUTRIATE SAMPLE-B

DATE 7- 8-81	TIME 1000	SETTLE- ABLE MATTER (ML/L/ HR) 450	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	GEN, AMMONIA O DIS- SOLVED (MG/L	GEN, GE RGANIC MO DIS- OF SOLVED I (MG/L	ONIA + PI RGANIC DIS. : (MG/L	PHOS- HORUS, DIS- SOLVED (MG/L AS P)	ARSENIC DIS- SOLVED (UG/L AS AS)	BERYL- LIUM, C DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	DIS- SOLVED (UG/L	LEAD, DIS- SOLVED (UG/L AS PB)
DATE	MAN NES DI SOL (UG AS	E, MERC S- DIS VED SOLV L/L (UG	- DIS- ED SOLVE /L (UG/	DIS- D SOLVED L (UG/L II) AS SE)	ZINC, DIS- SOLVED (UG/L AS ZN)	CYANIDE DIS- SOLVED (MG/L AS CN)	PHENOLS (UG/L)	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVED (UG/L)	ALDRIN DIS-,	CHLOR- DANE, DIS-, SOLVED (UG/L)	DDD, DIS- SOLVED (UG/L)	
DATE	DDE, DIS- SOLVEI (UG/L)	(UG/L)	(UG/L)	ELDRIN S DIS- SOLVED (UG/L)	ENDO- ULFAN, EI DIS- SOLVED : (UG/L)	DIS- SOLVED ((UG/L)	THION DIS- SOLVED (UG/L)	DIS- SOLVED (UG/L)	DIS- SOLVED (UG/L)	<.001 LINDAME DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)	<.001 METH- OXY- CHLOR, DIS- SOLVED (UG/L)	
7- 8-81 DATE 7- 8-8	PA TH E SC	THYL MERA- THOM, T	THYL RI- ION, MIR IS- DI LIVED SOL G/L) (UG		DIS- DIS- D SOLVEI (UG/L)	DIS- D SOLVE) (UG/L	DIS- D SOLVI) (UG/	N 2,4-1 - DIS- ED SOLVI L) (UG/1	DIS- ED SOLVEI L) (UG/L)	DIS SOLV (UG/	FED SOLUTED (UG)	VED	
					E	ELUTRIATE	SAMPLE-C	:					
DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	ICAL HIGH LEVEL (MG/L)	GEN, AMMONIA OR DIS- SOLVED S (MG/L () AS N) A	TITRO- N. GEN, GEI GANIC MOR DIS- ORC OLVED DI MG/L (N. S N) AS	ITRO- N,AM- NIA + PI GANIC IS. MG/L S N)	PHOS- HORUS, A DIS- SOLVED S (MG/L AS P)	ARSENIC DIS- SOLVED S (UG/L AS AS)	DIS- SOLVED S (UG/L AS BE) 1	(UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	
DATE 7- 8-81 DATE	TIME 1000 LEAL DISSOLV (UG/AS F	ABLE MATTER (ML/L/ HR) 300 MAN NES - DI ED SOI L (UG	DEMAND CHEM- ICAL HIGH LEVEL (MG/L) 500 GA E, MERCU S- DIS- VED SOLVE /L (UG/I	GEN, AMMONIA OR DIS- SOLVED S (MG/L (, AS N) A .52 RY NICKEL, DIS- D SOLVED (, (UG/L)	TITRO- N. GEN, GEI GANIC MOR DIS- ORC OLVED DI MG/L (N. S N) AS	ITRO- N,AM- NIA + PI GANIC IS. (MG/L S N) //	PHOS- HORUS, A DIS- SOLVED S (MG/L	ARSENIC DIS- SOLVED S (UG/L	LIUM, O DIS- SOLVED S (UG/L	DIS- SOLVED (UG/L	MIUM, DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	
7- 8-81	LEAL DIS SOLV (UG/AS F	ABLE MATTER (ML/L/ HR) 300 MAN , NES - DI (ED SOI L (UG B) AS 0	DEMAND CHEM- ICAL HIGH LEVEL (MG/L) 500 GA- E, MERCU S- UED SOLVE /L (UG/L) 10 E, DDT S- DIS- VED SOLVE S- DIS- S- DIS- S- DIS- S- DIS- S- DIS- S- S- DIS- S- S	GEN, AMMONIA OR DIS- SOLVED S (MG/L (AS N) A .52 RY NICKEL, DIS- DIS- DIS- (UG/L AS NI) 9 3 DI- C, AZINON, - TED SOLVED SOLVED SOLVED	ITRO- N. GEN, GEI GANIC MOD DIS- OR OLVED D: MG/L (A S N) AS SELE- NIUM, DIS- SOLVED (UG/L AS SE) 0 DI- ELDRIN DIS-	ITRO- N,AM- NIA + PI GIA + PI GIA + PI GIS- SINC, DIS- SOLVED (UG/L AS ZN) 50 ENDO- SULFAN, DIS-	PHOS-HORUS, DIS- SOLVED (MG/L AS P) .07 CYANIDE DIS- SOLVED (MG/L AS CN) .00 ENDRIN DIS-	ARSENIC DIS- SOLVED S (UG/L) 2 PHENOLS (UG/L) 0 , ETHION DIS- D SOLVE	LIUM, ODIS- SOLVED S (UG/L S AS BE) A PCB, DIS- SOLVED (UG/L) <.1 HEPTA- CHLOR, DIS- SOLVED SOLVED SOLVED SOLVED	DIS- SOLVED PCN, DIS- SOLVED (UG/L) <.1 HEPTA - CHIOR , EPOXII DIS- SOLVED S	MIUM, DIS- SOLVED (UG/L AS CR) 30 ALDRIN DIS-, SOLVED (UG/L) <.001 ALDRIN DIS-, SOLVED (UG/L) SOLVED DIS DIS DIS DIS DIS DIS DIS DIS DIS DI	DIS- SOLVED (UG/L AS CU) 2 CHLOR- DANE, DIS-, SOLVED (UG/L) <.1 MALA- THION, DIS- ED SOLVED SOLVED SOLVED SOLVED	

TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET
295808090013200 INDUSTRIAL CANAL, 383 YARDS NNE FROM INDUSTRIAL CANAL LOCK
NATIVE SAMPLE

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
7-13-79	1050	10800	7.5	<1.0	78	38000	1200	1100	100	240	2000	16
DATE	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	
7-13-79	115	0	94	540	3500	2	15	.89	.02	.25	.25	
DATE	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)		NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	
7-13-79	67	.60	.56	.86	.81	1140	1.8	.14	.10	2	1	
DATE	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)
7-13-79	1	9	10	10	0	2	0	2	.61	<20	0	<20
DATE	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
7-13-79	20	0	46	43	3	38	10	7	7	NTD	140	90
DATE	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, SUS- PENDED RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)
7-13-79	10	80	360	.1	.1	.15	4	2	2	20	<1	0
DA 7-13	ATE (UG	M, ZIN 'AL TOT OT- REC MA- ERA LIAL (UG	AL PEN OV-REC BLE ERA	IS- IDED ZIN IOV- DI IBLE SOI I/L (UG	S- TOM VED TER S/L (UG ZN) AS	OV. OT- CARB MA- ORGA ITAL TOT I/G (MG ZN) AS	NIC CYAI AL TO: L (MC	MAL TERI G/L (UC	TAL BOT- MA- IAL PHEN G/G CN) (UG	OLS GRA MET /L) (MG	SE, GREAN AL TOT. YAL TOT. YAL TOT. YAL TOT. YAL	SE, IN MAT VI- RIC

TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET
295808090013200 INDUSTRIAL CANAL, 383 YARDS NNE FROM INDUSTRIAL CANAL LOCK--CONTINUED
NATIVE SAMPLE

DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANF, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
7-13-79 7-13-79	130	.2	.00	190 	.0	.00	.0	.000	.000	.0	.0	.0
DATE	CHLOR-DANE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
7-13-79 7-13-79	.0 	.000	.000	24 	.000	.000	16 	.000	.000	.0	.07	
DATE	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN DIS- SOLVED (UG/L)	DI-	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- SOLVED (UG/L)	ENDRIN, TOTAL	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION DIS- SOLVED (UG/I.)
7-13-79 7-13-79	.00	.0 	.000	.000	1.4	.000	.000	.0	.00	.00	.0 	.00
DATE	ETHION, TOTAL (UG/L)	TERIAL	DIS-	HEPTA- CHLOR, TOTAL (UG/L)	TOM MA- TERLAI	DIS- SOLVED	EPOXID: TOTAL	MATL.	LINDANE DIS- SOLVED (UG/L)	LINDANE TOTAL (UG/L)	TERIAL	MALA- THION DIS- SOLVED
7-13-79 7-13-79	.00	0.0										
			.00	•00 0			• • •	00 .0	.00			_
DATE	MALA- THION TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL	METH- OXY- CHLOR, DIS-		METH- OXY- CHLOR, TOT. IN BOTTON MATL.	METHYL PARA- THION, DIS- SOLVEL	METHY PARA- THION TOTAL	METHYL PARA- L THION, TOT. IN BOTTOM MATL.				
DATE 7-13-79 7-13-79	MALA- THION TOTAL	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	METH- OXY- CHLOR, TOTAL	METH- OXY- CHLOR, TOT: IN BOTTON MATL (UG/KG)	METHYI PARA- N THION, M DIS- SOLVEI (UG/L)	METHY PARA-THION TOTAL (UG/L	METHYL PARA- L THION, TOT. IN , BOTTOM MATL.) (UG/KG)	METHYL TRI- THION, DIS- SOLVED	METHYL TRI- THION, TOTAL	METHYL TRI- THION, TOT. IN BOTTOM MATL.	MIREX, DIS- SOLVED
7-13-79	MALA-THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHIOR, DIS- SOLVED (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT: IN BOTTON MATL (UG/KG)	METHYI , PARA- N THION, M DIS- SOLVEI (UG/L)	METHY PARA-THION TOTAL (UG/L	METHYL PARA- L THION, TOT. IN BOTTOM MATL.) (UG/KG) 0 .0 PER- THANE	.00 METHYL TRI- THION, DIS- SOLVED (UG/L)00 TOX- APHENE,	METHYL, TRI- THION, TOTAL (UG/L)	METHYL TRI - THION, TOT. IN BOITOM MATL. (UG/KG)	MIREX, DIS- SOLVED (UG/L)

TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 295808090013200 INDUSTRIAL CANAL, 383 YARDS NNE FROM INDUSTRIAL CANAL LOCK--CONTINUED NATIVE SAMPLE

DATE 7-13-79 7-13-79	TOTAL TRI- THION (UG/L)		- 2,4-D - DIS- L SOLVE (UG/L	2,4-D D TOTAL) (UG/L	SOLVED) (UG/L) 0	2, 4-1) TOTA (UG/	L SOLL L) (UG	S- 2,4,5 VED TOTA /L) (UG/	AL SOLVI 'L) (UG,)0	S- SILVI ED TOTA /L) (UG)	AL FLUC /L) (UC	O- PHYTO- IK- PLANK- I TON IMO CHROMO
					P	TOTATE	SHIPLE					
DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	ARSENI	DIS-	CADMIU DIS- SOLVED (UG/L AS CD)	CHRO- M MIUM, DIS- SOLVED (UG/L AS CR)	COPPEI DIS-)
7-13-79	1050	500	200	2.2	1.8	4.0	3	10	3	0	2	
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVED (UG/L AS ZN)	CYANIDE DIS- SOLVED (MG/L AS CN)	PHENOLS (UG/L)	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVED (UG/L)	ALDRIN DIS-, SOLVED (UG/L)	CHIOR- DANE, DIS-, SOLVED (UG/L)
7-13-79	0	1100	.3	0	0	20	.00	4	.0	.0	.000	.0
DATE	DDD, DIS- SOLVED (UG/L)	DDE, DIS- SOLVED (UG/L)	DDT, A DIS- SOLVED (UG/L)	DI- AZINON, DIS- SOLVED (UG/L)	DI- ELDRIN S DIS- SOLVED (UG/L)	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDRIN, DIS- SOLVED (UG/L)	ETHION, DIS- SOLVED (UG/L)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)
7-13-79	.000	.000	.000	.13	.000	.000	.000	.00	.000	.000	.000	.00
DATE	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	PARA- THION, DIS-	METHYL TRI- THION, DIS- SOLVED (UG/L)	MIREX, DIS- SOLVED (UG/L)	PARA- THION, DIS- SOLVED (UG/L)	PER- THANE DIS- SOLVED (UG/L)	TOX- APHENE, DIS- SOLVED (UG/L)	TRI- THION DIS- SOLVED (UG/L)				

.00

.00

7-13-79

.00

.00

.00

.00

.00

TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 295909090011200 INDUSTRIAL CANAL, 1.6 MILES UPSTREAM FROM GATES AT NEW ORLEANS, LA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOITOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
7-13-79	1115	7700	7.6	<1.0	65	68000	820	760	63	160	1300	50
DATE	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	
7-13-79	72	0	59	350	2400	6	6	.06	.02	.21	.21	
DATE	NITRO- GEN, NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	+ ORG.		PHOS- PHORUS, TOTAL (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC	
7-13-79	103	.65	.33	.86	.54	1750	.94	.03	2	<1	2	
DATE	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
7-13-79	8	10	10	0	N ID	0	ND	1.02	ND	0	ND	0
DATE	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANCA- NESE, SUS- PENDED RECOV. (UG/L AS MN)
7-13-79	0	6	4	2	0	10	9	9	ND	0	110	30
D≱	NES DI SOI (UC	IGA- NES SE, REC IS- FM F IVED TOM G/L TEI	XXV. TO: 8OT- REX MA- ERV RIAL (UX	TAL MERC COV- DI ABLE SOI G/L (UC	CURY FM B IS- TOM VED TER	OV. NICK OT- TOT MA- REC CIAL ERA S/G (UG	AL PENOV- REC BLE ERA L/L (UC	JS- NDED NICK COV- DIS ABLE SOI G/L (UC		OV. OT- SEL MA- NIU IAL TOI /G (UG	M, PEN AL TOT	M, SS- DED PAL S/L
7-13	3-79	80	39	.1	.1	.25	3	2	<2	0	<1	0
	SEI NII TO IN I TOM TEI ATE (U	BOT- REX MA- ERA RIAL (UC	NC, SI PAL PEI COV- REX ABLE ER G/L (U	ABLE SOI G/L (UC	NC, FM E IS- TOM LVED TEF S/L (UC	XOV. BOT- CARE MA- ORGA RIAL TOI B/G (MC ZN) AS	NIC CYAL TAL TO: L/L (MC C) AS	IN E NIDE TOM FAL TERI G/L (UX CN) AS	TAL BOT- MA- IAL G/G PHEN CN) (UG	GRA OLS MET (/L) (MC	SE, GREA TAL TOT. TOV. BOT TOVI- GRA TRIC MET G/L) (MG/	SE, IN MAT VI- TRIC (KG)
/-13	, 13	U	20	U	20	0	.0	.00	0	0	0	0

TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET
295909090011200 INDUSTRIAL CANAL, 1.6 MILES UPSTREAM FROM GATES AT NEW ORLEANS, LA--CONTINUED
NATIVE SAMPLE

DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
7 - 13-79 7 - 13-79	- - 92	.0	•00	150	.0	•00 	.0	.000	.000	.0	.0	.0
DATE	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
7-13-79 7-13-79	30 	.000	.000	6 	.000	.000	1.1	.000	.000	.0	.05	
DATE	DI-	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI - ELDRIN DIS- SOLVED (UG/L)	DI-	TOM MA-	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDO-	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- SOLVED (UG/L)		ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ETHION DIS- SOLVED (UG/L)
7-13-79 7 - 13-79	.00	.0	.000	.000	1.5	.000	.000	.0	.00	.00	.0	.00
DATE	ETHION, TOTAL (UG/L)	TERIAL	HEPTA- CHIOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DIS- SOLVED	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	MATL.	LINDANE DIS- SOLVED (UG/L)	LINDANE TOTAL (UG/L)	TERIAL	MALA- THION DIS- SOLVED
DATE 7-13-79 7-13-79	TOTAL	TOTAL IN BOT- TOM MA- TERIAL	CHLOR, DIS- SOLVED	CHLOR, TOTAL	CHLOR, TOTAL IN BOT- TOM MA- TERIAL	CHLOR EPOXIDE DIS- SOLVED	CHLOR EPOXIDE TOTAL	CHLOP EPOXIDE TOT. IN BOTTOM MATL.	DIS- SOLVED	LINDANE TOTAL	TOTAL IN BOT- TOM MA- TERIAL	MALA- THION DIS- SOLVED
7-13-79	TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL	CHIOR, DIS- SOLVED (UG/L)000 METH- OXY- CHIOR, DIS-	CHLOR, TOTAL (UG/L)	CHLOR, TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	CHLOR EPOXIDE DIS- SOLVED (UG/L)	CHLOR EPOXIDE TOTAL (UG/L)	CHLOP EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	DIS- SOLVED (UG/L)	LINDANE TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION DIS- SOLVED (UG/L)
7-13-79 7-13-79	TOTAL (UG/L) .00 MALA- THION,	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL	CHIOR, DIS- SOLVED (UG/L)000 METH- OXY- CHIOR, DIS- SOLVED	CHLOR, TOTAL (UG/L) .000 METH- OXY- CHLOR, TOTAL	CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 METH- OXY- CHLOR, TOT. IN BOTTOM MATL.	CHLOR EPOXIDE DIS- SOLVED (UG/L)000 METHYL PARA- THION, DIS- SOLVED	CHLOR EPOXIDE TOTAL (UG/L) .000 METHYL PARA- THION, TOTAL	CHLOR EPOXIDE TOT. IN E BOTTOM MATL. (UG/KG) .0 METHYL PARA- THION, TOT. IN BOTTOM MATL.	DIS-SOLVED (UG/L)000 METHYL TRI-THION, DIS-SOLVED	LINDANE TOTAL (UG/L) .000 METHYL TRI- THION,	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 METHYL TRI- THION, TOT. IN BOTTOM MATL.	MALA-THION DIS- SOLVED (UG/L)00 MIREX, DIS- SOLVED
7-13-79 7-13-79 DATE 7-13-79	MALA-THION, TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHIOR, DIS- SOLVED (UG/L)000 METH- OXY- CHLOR, DIS- SOLVED (UG/L)	CHLOR, TOTAL (UG/L) .000 METH- OXY- CHLOR, TOTAL (UG/L) .00	CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	CHLOR EPOXIDE DIS- SOLVED (UG/L)000 METHYL PARA- THION, DIS- SOLVED (UG/L)	CHLOR EPOXIDE TOTAL (UG/L) .000 METHYL PARA- THION, TOTAL (UG/L)	CHLOR EPOXIDE TOT. IN E BOTTOM MATL. (UG/KG) METHYL PARA-THION, TOT. IN BOTTOM MATL. (UG/KG) .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	DIS-SOLVED (UG/L)0000 METHYL TRI-THION, DIS-SOLVED (UG/L)000	LINDANE TOTAL (UG/L) .000 METHYL TRI- THION, TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 METHYL TRI- THION, TOT- IN BOTTOM MATL. (UG/KG) .0	MALA-THION DIS- SOLVED (UG/L) MIREX, DIS- SOLVED (UG/L)

TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET
295909090011200 INDUSTRIAL CANAL, 1.6 MILES UPSTREAM FROM GATES, AT NEW ORLEANS, LA--CONTINUED
NATIVE SAMPLE

DATE	TOTAL TRI - THION (UG/L)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2,4-D, DIS- SOLVED (UG/L)	2,4-D, TOTAL (UG/L)	2,4-DP DIS- SOLVED (UG/L)	2, 4-DP TOTAL (UG/L)	2,4,5-T DIS- SOLVED (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, DIS- SOLVED (UG/L)	SILVEX, TOTAL (UG/L)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)
7-13-79 7-13-79	.00	.0 	.00	.00	.00	.00 UTRIATE SA	.00 MPLE	.00	.00	.00 	2.24	.000

DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	ORGANIC	ARSENI	DIS- SOLVED (UG/L	CADMIU DIS- SOLVED (UG/L AS CD)	DIS-	COPPEI DIS- SOLVEI (UG/L AS CU))
7-13-79	1115	520	120	3.9	9.1	13	1	0	0	0	2	
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVEI (UG/L AS MN)	MERCUR DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVEI (UG/L AS ZN)	(MG/L	PHENOIS (UG/L)	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVED (UG/L)	ALDRIN DIS-, SOLVED (UG/L)	CHLOR- DANE, DIS-, SOLVED (UG/L)
7-13-79	0	810	.1	2	0	20	.00	7	.0	.0	.00	.00
DATE	DDD, DIS- SOLVED (UG/L)	DDE, DIS- SOLVED (UG/L)	DDT, DIS- SOLVED (UG/L)	DIS-	DI- ELDRIN DIS- SOLVED (UG/L)	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDRIN, DIS- SOLVED (UG/L)	ETHION, DIS- SOLVED (UG/L)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)
7-13-79	.000	.000	.000	.09	.000	.000	.000	.00	.000	.000	.000	.00
DATE	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	PARA-	METHYL TRI- THION, DIS- SOLVED (UG/L)	MIREX, DIS-	PARA- THION, DIS- SOLVED (UG/L)	PER- THANE DIS- SOLVED (UG/L)	TOX- APHENE, DIS- SOLVED (UG/L)	TRI- THION DIS- SOLVED (UG/L)				
7-13-79	•00	.00	•00	.00	.00	.00	.00	.00				

TABLE 9.--WATER-QUALITY DATA, MISSISSIPPI RIVER-GULF OUTLET 300000089575400 INTRACOASTAL WATERWAY 5.0 MILES EAST OF INDUSTRIAL CANAL LOCK, (AT MILE 62.5), NEAR NEW ORLEANS NATIVE SAMPLE

DATE	C C E A			LE ICA TER (H) L/ LEVI	AND, TOTAL BOTTERL) TERL	TAL HAI TOM NES A- (M TAL A	RD~ NEX SS NON G/L BON S (MK	CAR- DIS ATE SOI G/L (MC	CIUM SI S- DI JVED SOI S/L (MK	IS- DIS LVED SOLV 3/L (M	
7-13-79	1145	10000	<7. 5	1.0	73 75	5000	1100	1000	84	210	1800
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	AS	CAR- I BONATE FET-FLD (MG/L AS CO3)	FIELD (MG/L AS	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED	RESIDUE AT 105 DEG. C, SUS-	VOLA- TILE, SUS-	SOLIDS, VOIA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)
7-13-79	73	77	0	63	460	3400	13	6	7	.06	.02
DATE	NITRO GEN, AMMONI TOTAI (MG/1 AS N)	, AMMONIA IA DIS- L SOLVED L (MG/L	IN BOT.	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	ORGANIC	GEN,AM MONIA	- GEN, NHA + + ORG. C TOT IN BOT MAY (MG/K	NITRO GEN, I TOTAL		
7-13-79	.2	.21	69	•51	.45	.72	.66	1500		80	
	PHOS- PHORUS TOTAL (MG/L	PHOS- PHORUS, DIS- SOLVED (MG/L	ARSENIC TOTAL (UG/L	ARSENIC SUS- PENDED TOTAL (UG/L	ARSENIC DIS- SOLVED (UG/L	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L	BERYL- LIUM, DIS- SOLVED (UG/L	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL	CADMIUM TOTAL RECOV- ERABLE (UG/L	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L
DATE	AS P)	AS P)	AS AS)	AS AS)	AS AS)	AS AS)	AS BE)	AS BE)	(UG/G)	AS CD)	AS (TD)
7-13-79	9 .30	.12	2	1	1	6	10	10	0	<2	0
DATE	CADMIUM DIS- SOLVE (UG/L AS CD)	TOM MA- D TERIAL (UG/G	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RFCOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)
7-13-79	9 <2	.76	ND	0	ND	7	0	23	20	3	16
DATE	IRON, DIS- SOLVE (UG/L AS FE	(UG/L	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/I, AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/I, AS HG)	
7-13-7	9 10	0 8	7	<2	40	100	30	70	280	.3	
D	MERCU DIS SOLV (UG/	- TOM MA- ED TERIAL L (UG/G	NICKEL, TOTAL RECOV- ERABLE (UG/L	(UG/L	NICKEL, DIS- SOLVED (UG/L	TOM MA- TERIAI (UG/G	SELE- NIUM, TOTAL (UG/L	SELE- NIUM, SUS- PENDED TOTAL (UG/L	SOLVET (UG/L	TERIAI	• 5
DAT				AS NI)	AS NI)	-	·	·	AS SE)		
7-13-	79	.3 .11	. 4	3	<2	15	5 <1	. 0	<1	()

TABLE 9.--WATER-QUALITY DATA, MISSISSIPPI RIVER-GULF OUTLET

300000089575400 INTRACOASTAL WATERWAY 5.0 MILES EAST OF INDUSTRIAL CANAL LOCK, (AT MILE 62.5), NEAR NEW ORLFANS, LA--CONTINUED

DATE	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN)	PHENOIS (UG/L)	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)		
7-13-79	40	10	30	100	5.6	.00	0	2	0	0		
DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
7-13-79			.00	36		.00	.0		.000	.0		.0
7-13-79	9 12	0.0			.0			.000			.0	
D A ʻ	CHLOI DANE TOTA IN BO TOM MI TERLI IE (UG/KO	, L T- DDD, A- DIS- AL SOLVEI			- DDE, - DIS- L SOLVE	DDE, D TOTAL		- DDT, - DIS- L SOLVE		TERIA	DI- - AZINON - DIS- I SOLVE	D
7-13- 7-13-		.0 00	•00	0 2.1	.00	•00			0	0 .0		
		•			•••			•00	•		•01	
		DT_			DT-			ENTO				
DATE	DI-	TOM MA- TERIAL	DI- ELDRIN DIS- SOLVED (UG/L)	DI- I ELDRIN T TOTAL	OM MA- TERIAL S	ENDO- SULFAN, DIS- S SOLVED (UG/L)	ENDO- I SULFAN, I TOTAL	ENDO- SULFAN, TOTAL EN BOT- E COM MA- TERIAL (UG/KG)	NDRIN, DIS- I SOLVED (UG/L)	INDRIN, 7	OM MA- TERIAL S	THION DIS- OLVED (UG/L)
7-13-79	DI- AZINON, TOTAL	AZINON, TOTAL IN BOT- I TOM MA- TERIAL S	ELDRIN DIS- SOLVED (UG/L)	DI- I ELDRIN T TOTAL	IDRIN, TOTAL IN BOT- S OM MA- TERIAL S (UG/KG)	SULFAN, DIS- S SOLVED (UG/L)	ENDO- I SULFAN, I TOTAL	OULFAN, TOTAL IN BOT- E OM MA- TERIAL	DIS- I SOLVED (UG/L)	INDRIN, 7	TOTAL N BOT- E OM MA- TERIAL S	DIS- COLVED (UG/L)
	DI- AZINON, TOTAL (UG/L)	AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ELDRIN DIS- SOLVED (UG/L)	DI- I ELDRIN I TOTAL (UG/L) (IDRIN, TOTAL N BOT- S OM MA- TERIAL S (UG/KG)	SULFAN, DIS- S SOLVED (UG/L)	ENDO- I GULFAN, I TOTAL (UG/L)	SULFAN, TOTAL IN BOT- E TOM MA- TERIAL (UG/KG)	DIS- I SOLVED (UG/L)	NDRIN, 7 TOTAL (UG/L)	TOTAL IN BOT- E OM MA- TERIAL S (UG/KG) (DIS- OLVED (UG/L)
7-13-79 7-13-79	DI- AZINON, TOTAL (UG/L) .00 EIHION, TOTAL (UG/L)	AZINON, TOTAL IN BOT- TERIAL (UG/KG) O ETHION, TOTAL IN BOT- TOM MA- TERIAL STRING TOTAL IN BOT- TOM MA- TERIAL	ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHLOR, DIS- SOLVED	DI I ELDRIN TOTAL (UG/L) (.000 HEPTA-CHLOR, TOTAL	ELDRIN, TOTAL N BOT- S OM MA- TERIAL S (UG/KG) .3 HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL	SULFAN, DIS- SOLVED (UG/L)000 HEPTA- CHLOR EPOXIDE DIS- SOLVED	ENDO- I SULFAN, T TOTAL (UG/L) .000 HEPTA- CHLOR EPOXIDE TOTAL	EULFAN, TOTAL IN BOT- F OOM MA- TERIAL (UG/KG) .0 HEPTA- CHIOR EPOXIDE TOT. IN BOTTOM MATL.	DIS- I SOLVED (UG/L) .00 LINDANE DIS- SOLVED	ENDRIN, TOTAL (UG/L) .00 LINDANE TOTAL	TOTAL N BOT- E OM MA- TERIAL S UG/KG) O LINDANE TOTAL IN BOT- TOM MA- TERIAL	DIS- OLVED (UG/L)00 MALA- THION DIS- SOLVED
7-13-79 7-13-79 DATE 7-13-79	DI- AZINON, TOTAL (UG/L) .00 EIHION, TOTAL (UG/L)	AZINON, TOTAL TOTAL TOTAL TOM MA- TERIAL (UG/KG) ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0 MALA- THION, TOTAL IN BOT- THION, TOTAL IN BOT- THION, TOTAL IN BOT-	ELDRIN DIS- SOLVED (UG/L)000 HEPTA- CHLOR, DIS- SOLVED (UG/L)	DI- I ELDRIN T TOTAL (UG/L) (.000 HEPTA- CHLOR, TOTAL (UG/L) .000	ELDRIN, TOTAL N BOT- OM MA- TERIAL S (UG/KG) .3 HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0	SULFAN, DIS- SOLVED (UG/L)000 HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	ENDO- I SULFAN, TOTAL (UG/L)000 CHLOR EPOXIDE TOTAL (UG/L) .000	EULFAN, TOTAL IN BOT- IN BOTTOM MATL. (UG/KG) .0	DIS- I SOLVED (UG/L)00 LINDANE DIS- SOLVED (UG/L)	LINDANE TOTAL (UG/L) .000	TOTAL N BOT- OM MA- TERIAL OUG/KG) O LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG) .0	DIS- OLVED (UG/L) 00 MALA- THION DIS- SOLVED (UG/L)

TABLE 9. -- WATER-QUALITY DATA, MISSISSIPPI RIVER-GULF OUTLET

300000089575400 INTRACOASTAL WATERWAY 5.0 MILES EAST OF INDUSTRIAL CANAL LOCK, (AT MILE 62.5), NEAR NEW ORLEANS, LA--CONTINUED

NATIVE SAMPLE

DATE	MIREX, TOTAL (UG/L)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, DIS- SOLVED (UG/L)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE, DIS- SOLVED (UG/L)	PER- THANE TOTAL (UG/L)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX- APHENE, DIS- SOLVED (UG/L)	TOX- APHENE, TOTAL (UG/L)	TERIAL	TRI- THION, DIS- SOLVED
7-13-79 7-13-79	.00	.0	.00	.00	.0	.00	.00	.00	.0	.0	.0	 •00
DATE	TOTAL TRI- THION (UG/L)	TRI - THION TOTAL IN BOT TOM MA TERIA (UG/KG	- 2,4-D, - DIS- L SOLVEI	2,4-D TOTAL	SOLVEI	P 2, 4-1	L SOI	5-T S- 2,4,5 VED TOT G/L) (UG	SILV 5-T DI AL SOLV	S- SILV	TAL FLU	TO- PHYTO- NK- PLANK- N TON
7-13-79		.0		.00			00	-	•		.00 2	.62 .000
7-13-79	•		.00		.00	,		.00		00		
					E	LUTRIATE	SAMPLE					
DATE	TIME	SEITLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	ARSEN DIS- SOLVE (UG/I AS AS	DIS- D SOLVE L (UG/L	, CADMI DIS D SOLVE (UG/L	DIS- D SOLVI (UG/1	M, COPPI - DIS- ED SOLVI L (UG/1	- 30 L
7-13-79	1145	510	140	1.9	1.6	3.5]	. 0	0	() :	2
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS-	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVED (UG/L AS ZN)	CYANIDE DIS- SOLVED (MG/L AS CN)	PHENOLS (UG/L)	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVED (UG/L)	ALDRIN DIS-, SOLVED (UG/L)	CHIOR- DANE, DIS-, SOLVED (UG/L)
7-13-79	3	780	.2	2	0	30	.00	2	.0	.0	.000	.0
DATE	DDD, DIS- SOLVED (UG/L)	DDE, DIS- SOLVED (UG/L)	DIS- SOLVED S	DIS-	DI- ELDRIN : DIS- SOLVED (UG/L)	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDRIN, DIS- SOLVED (UG/L)	ETHION, DIS- SOLVED (UG/L)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)
7-13-79	.000	.000	.000	.06	.000	.000	.000	.00	.000	.000	.000	.00
DATE	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	PARA- THION, DIS-	DIS~ SOLVED S	DIS-	PARA- THION, DIS- SOLVED (UG/L)	PER- THANE DIS- SOLVED (UG/L)	TOX- APHENE, DIS- SOLVED (UG/L)	TRI - THION DIS- SOLVED (UG/L)				

.00

.0

.00

7-13-79 .00 .00 .00 .00 .00

TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-CULF OUTLET
300022089552500 MISSISSIPPI RIVER-GULF OUTLET CANAL AT INTRACOASTAL WATERWAY, (AT MILE 58.5),
NEAR NEW ORLEANS, LA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
7-13-79	1216	14700	7.4	<1.0	240	180000	1600	1500	120	310	2700
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NON- VOLA-	SOLIDS, VOIA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- CEN, NITRITE TOTAL (MG/L AS N)
7-13-79	110	87	0	71	700	5000	14	2	12	.06	.04
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	IN BOT.	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	ORGANIC	GEN, AN MONIA ORGANI	H GEN, A + MONIA C ORGAN DIS.	M- GEN, N 1 + + ORG HIC TOT I BOT M /L (MG/	H4 NITRO NGEN, AT TOTAL KG (MG/L	: :	
7-13-79	.23	.19	73	•55	.49	.78	.6	8 460	0 .88	1	
DATE	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAI (UG/G AS AS)	LIUM, TOTAL RECOV- ERABLE (UG/L	BERYL- LIUM, DIS- SOLVED (UG/L	RECOV. FM BOT-	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)
7-13-79	.14	.09	2	1	1	10	10	10	0	NID	0
DATE	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAI (UG/G)	- VALENT, - DIS. L (UG/L	FRABLE (UG/L	PENDED RECOV-	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)
7-13-79	ND	.32	< 20	10	ND	11	0	150	150	<2	18
Ē	D SC (U	ON, TO IS- RE ILVED EX IG/L (U	CAD, S OTAL PI CCOV- RI RABLE EI UG/L (U	200V- I RABLE SO NG/L (U	RI EAD, FM DIS- TO DLVED TI UG/L (1	ECOV. 1 BOT- 1 M MA- 1 ERIAL 1 UG/G	NESE, 1 NOTAL RECOV- 1 ERABLE 1 (UG/L	SUS- N PENDED RECOV. S (UG/L	IANGA- NI JESE, RI DIS- FM SOLVED TON JUG/L TI	ERIAL (RCURY OTAL ECOV- RABLE UG/L S HG)
7-1	.3-79	20	10	9	<2	15	80	6 0	20	270	.1
	1 SC (U	RECURY FM OIS- TON OLVED TH	BOT- TO 1 MA- RI ERIAL EI JG/G (1	CKEL, SECONDARY OF THE COORD OF	ECOV- D' RABLE SI UG/L (1	CKEL, FI IS- TO OLVED ' UG/L	OM MA- 1 FERIAL ' (UG/G	SELE- NIUM, F IOTAL 1 (UG/L	SUS- NI PENDED I OTAL SO UG/L (I	ELE- N TUM, T DIS- IN DLVED TO UG/L T	ELE- IUM, OTAL BOT- M MA- ERIAL UG/G)
,-1	.3 17	• 1	•02	U	,	~~	20	~1	U	*1	U

TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET
300022089552500 MISSISSIPPI RIVER-GULF OUTLET CANAL AT INTRACOASTAL WATERWAY, (AT MILE 58.5),
NEAR NEW ORLEANS, LA--CONTINUED

E	TO RI EI (1	OTAL PEN OCOV- REC RABLE ERA OG/L (UC	JS- VDED ZIN DOV- DI ABLE SOI G/L (UC	ZING RECO C, FM B IS- TOM I VED TER G/L (UG ZN) AS	OV. OT- CARB MA- ORGA IAL TOT /G (MG	NIC CYAN AL TOT	TO: IN F IDE TOM TAL TER! G/L (U	G/G PHE	GRA VOLS MET	ASE, GREATAL TOTA COV. BOTAVI- GRA TRIC MET	SE, IN	
7-1	.3-79	110	80	30	53 5.	6 .0	00	0	5 () ()	
DATE	OXYGEN DEMAND CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BÖT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
7-13-79			.00	11		.00	.0		.000	•0		.0
7-13-79 DATE	240 CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	.0 DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	.000 DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI - AZINON, DIS- SOLVED (UG/L)	
7-13-79 7-13-79	.0	.000	.000	.0	.000	.000	.0	.000	.000	.0	.00	
DATE	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI - ELDRIN DIS- SOLVED (UG/L)	DI - I ELDRIN I TOTAL	DI- ELDRIN, TOTAL IN BOT- S IOM MA- TERIAL S	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDO-	ENDO- SULFAN, TOTAL	ENDRIN,		ENDRIN, TOTAL, IN BOT-	ETHION DIS- SOLVED (UG/L)
7-13-79 7-13-79	.00	.0	.000	.000	.0	 •000	.000	.0	.00	.00	.0	.00
DATE	ETHION TOTAL (UG/I	TERIAL	HEPTA- CHLOR, DIS- SOLVED	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE DIS-	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	MATL.	: LINDANE DIS-	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION DIS- SOLVED
7-13-79 7-13-79	.00		.000	.000	•0 	.000	.000	0. 0	.000	.000	.0	.00
DATE	MALA- THIOI TOTAI (UG/)	MALA- THION, TOTAL IN BOT- N, TOM MA- L TERIAL	METH- OXY- CHLOR, DIS- SOLVED	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	METHYL PARA- THION,	METHYI PARA- THION,	METHYL PARA- L THION, TOT. IN BOTTOM MATL.	METHYL TRI- THION, I DIS- SOLVED	METHYL TRI- THION, TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIRFX, DIS- SOLVED (UG/L)
7-13-79												

TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET

300022089552500 MISSISSIPPI RIVER-GULF OUTLET CANAL AT INTRACOASTAL WATERWAY, (AT MILE 58.5), NEAR NEW ORLEANS, LA--CONTINUED

NATIVE SAMPLE

DATE	MIREX, TOTAL (UG/L)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, DIS- SOLVED (UG/L)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE, DIS- SOLVED (UG/L)	PER- THANE TOTAL (UG/L)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX- APHENE, DIS- SOLVED (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG	DIS- SOLVED
7-13-79 7-13-79	.00	.0 	.00	.00	.0	.00	.00	.00	.0	.0 	.0	.00
DATE	TOTAL TRI - THION (UG/L)	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	- 2,4-d, - dis- L solvei	2,4-D TOTAL	SOLVEI	? 2, 4-I O TOTAI	SOLV	S- 2,4,5 VED TOTA	SILVI 5-T DIS AL SOLVI	S- SILV ED TOT	AL FLUC	C-A CHIOR-B CO- PHYTO- IK- PLANK- I TON IMO CHROMO
7-13-79 7-13-79	.00	.0	.00	.00	.00	.00	_	• • • • •	_	••		05 .000
1-13-15			•00		•00		•00	o –	•0	-		
						ELUTR	IATE SAME	PLE				
DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	ARSENIO DIS- SOLVED (UG/L AS AS)	BERYL C LIUM, DIS- SOLVED (UG/L AS BE)	CADMIU DIS- SOLVED (UG/L AS CD)	CHRO- M MIUM, DIS- SOLVED (UG/L AS CR)	COPPER DIS-	•
7-13-79	1216	750	160	1.8	1.8	3.6	8	0	0	10	0	
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVED (UG/L AS ZN)	CYANIDE DIS- SOLVED (MG/L AS CN)	PHENOLS (UG/L)	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVED (UG/L)	ALDRIN DIS-, SOLVED (UG/L)	CHLOR- DANE, DIS-, SOLVED (UG/L)
7-13-79	0	460	.1	0	1	30	.00	3	.0	.0	.000	.0
DATE	DDD, DIS- SOLVED (UG/L)	DDE, DIS- SOLVED (UG/L)	DIS-	DI- ZINON, DIS- SOLVED (UG/L)	DI- ELDRIN DIS- SOLVED (UG/L)	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDRIN, DIS- SOLVED (UG/L)	ETHION, DIS- SOLVED (UG/L)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	MALA- THION, DIS- SOIVED (UG/L)
7-13-79	.000	.000	.000	.02	.000	.000	.000	.00	.000	.000	.000	.00
DATE	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	PARA- THION, DIS-	DIS-	MIREX, DIS- SOLVED (UG/L)	PARA- THION, DIS- SOLVED (UG/L)	PER- THANE DIS- SOLVED (UG/L)	TOX- APHENE, DIS- SOLVED (UG/L)	TRI- THION DIS- SOLVED (UG/L)				

.00 .0

.00

7-13-79 .00

.00

.00

TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 295721089512700 MISSISSIPPI RIVER-GULF OUTLET CANAL, (AT MILE 54.5), NEAR NEW ORLEANS, LA NATIVE SAMPLE

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
7-13-79	1247	15 3 00	7.4	<1.0	100	180000	1700	1600	120	330	2900	6.8
DATE	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	AMMONIA	
7-13-79	89	0	73	110	4900	0	11	.06	.02	.20	.19	
DATE	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO GEN, AM MONIA ORGANI DIS. (MG/L AS N)	- GEN,NH + + ORG. C TOT IN BOT MA	4 NITRO GEN, T TOTAL	PHORUS TOTAL	, DIS- SOLVED	ARSENIC TOTAL (UG/L AS AS)	TOTAL (UG/L	
7-13-79	130	.60	.49	.80	.68	3 3 00	.88	.09	.09	1	0	
DATE	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)
7-13-79	1	5	<10	<10	0	<2	0	<2	.27	< 20	0	<20
DA	FM E TOM TEE	M, MIC COV. HEX BOT- VALI MA- DI RIAL (UC	M, COPI (A- TO) INT, REX IS. ERA G/L (U	TAL PEN COV- REC ABLE ERA G/L (UC	S- NDED COPP COV- DIS	- TOM VED TER /L (UG	OV. OT- IRO MA- DI IAL SOL	S- REC VED ERA /L (UG	AL PEND OV- RECO BLE ERAB J/L (UG/	ED LEAI V- DIS LE SOLV L (UG/	S- TOM M /ED TERI /L (UG/	V. T- A- AL G
7-13	-79	4	0	39	37	2	6	20	8	7	< 2	10
DA	NEX TO: REX ER/	SE, NES PAL SU COV- PER ABLE REX G/L (UC	JS- NE NDED D COV. SO G/L (U	NGA- NES SE, REX IS- FM E LVED TOM G/L TER	OV. TOI	AL MERC OV- DI BLE SOL L/L (UG	TURY FMB S-TOM WED TER S/L (UG	OV. NICK OT- TOT MA- REC CIAL ERA	PEND COV-RECO BLE ERAB G/L (UG/	ED NICKI V- DIS- LE SOLV L (UG,	- TOM M /ED TERI /L (UG/	V. T- A- AL G
7-13	-79	70	50	20	250	.2	.2	.07	5	4	<2	0
D A	NIU TO: (U)	IM, PEI PAL TO: G/L (U	IM, NI US- TO NDED IN I TAL TOM G/L TE	BOT- REX MA- ER/ RIAL (U	PAL PEN COV- REC ABLE ERA S/L (UC	IS- IDED ZIN IOV- DI	C, FMB S-TOM WED TER	OV. OT- CARE MA- ORGA LIAL TOI	NIC CYANI TAL TOTA G/L (MG/	L TERIA	AL OT- MA- AL PHENO /G	
7-13	- 79	<1	0	0	50	20	30	69 5	.8 .0	0 () 1	

TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET
295721089512700 MISSISSIPPI RIVER-GULF OUTLET CANAL, (AT MILE 54.5), NEAR NEW ORLEANS, LA--CONTINUED
NATIVE SAMPLE

DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
7-13-79 7-13-79	240	.0	.00	0	.0	.00	.0	.000	.000	.0	.0	.0
DATE	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
7 - 13 - 79 7 - 13 - 79	.0 	.000	•000	.0	•000	.000	.0	.000	.000	.0 	.00	
DATE	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI - ELDRIN DIS- SOLVED (UG/L)	DI-	TOM MA-	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- SOLVED (UG/L)			ETHION DIS- SOLVED (UG/L)
7-13 - 79 7-13 - 79	•00	.0	.000	.000	•7 	.000	.000	.0	.00	.00	.0	.00
DATE	ETHION, TOTAL (UG/L)	TERIAL	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DIS-	HEPTA- CHLOR EPOXIDI TOTAL (UG/L)	MATL.	LINDANE DIS- SOLVED (UG/L)	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION DIS- SOLVED (UG/L)
7-13-79 7-13-79	.00	.0	.000	.000	.0	.000	.000	.0	.000	.000	.0	.00
DATE	MALA- THION TOTAL (UG/L	TERIAL	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	MATL.	THION, DIS- SOLVEI	METHY: PARA- THION	TOT. IN BOTTOM MATL.	•	METHYL TRI - THION, TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, DIS- SOLVED (UG/L)
7-13-79 7-13-79	.00	.0	.00	.00	.0	.00	.00	.0	.00	.00	.0	.00
DATE	MIREX, TOTAL (UG/L)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, DIS- SOLVED (UG/L)	PARA- THION, TOTAL (UG/L)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE, DIS- SOLVED (UG/L)	PER- THANE TOTAL (UG/L)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX- APHENE, DIS- SOLVED (UG/L)	TOX- APHENE, TOTAL (UG/L)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, DIS- SOLVED (UG/L)
7-13-79 7-13-79	.00	.0	.00	•00 	.0	.00	.00	.00	.0	.0	.0 	.00

TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET 295721089512700 MISSISSIPPI RIVER-GULF COUTLET CANAL, (AT MILE 54.5), NEAR NEW ORLEANS, LA--CONTINUED NATIVE SAMPLE

DATE 7-13-79 7-13-79		- TOM M N TERI L) (UG/K	N, L T- 2,4- A- DIS AL SOLV G) (UG/	= 2,4- ED TOTA (L) (UG/	L SOLV L) (UG/ 0	- 2, ED TOI L) (UG	4-DP : AL S J/L) (OLVED I	4,5-T OTAL SO	LVED TO	PF PI TVEX, CF DTAL FI	OR-A CHLOR-B PHYTO- ANK- PLANK- ON TON RROMO CHROMO UOROM FLUOROM (UG/L) 4.89 .000
						ELUTRIAT	E SAMPLE					
DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	GEN, AM- MONIA + ORGANIC	- ARSEN	DIS- D SOLVE (UG/I	DIS D SOLVE (UG/I	- DIS- D SOLVE (UG/L	, COPPH DIS- DIS- DISOLVE (UG/I	ED S
7-13-79	1247	420	210	4.0	12	16	2	0	0	10	1	
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVEL (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L	MICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVEI (UG/L AS SE)	(UG/L	(MG/L				ALDRIN DIS-, SOLVED (UG/L)	CHLOR- DANE, DIS-, SOLVED (UG/L)
7-13-79	0	3100	.2	1	0	30	.00	3	.0	.0	.000	.0
;	DDD, DIS- SOLVED	DDE, DIS-		DI- AZINON, DIS- SOLVED (UG/L)	DI-	ENDO- SULFAN, DIS- SOLVED	ENDRIN, DIS- SOLVED	ETHION, DIS- SOLVED	HEPTA- CHLOR, DIS- SOLVED	HEPTA- CHLOR EPOXIDE DIS- SOLVED	LINDANE DIS- SOLVED	MALA- THION, DIS- SOLVED
						(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
	.000 METH- OXY- CHLOR, DIS- SOLVED	.000 METHYL PARA- THION, DIS- SOLVED	.000 METHYL TRI- THION, DIS- SOLVED	MIREX, DIS- SOLVED	PARA- THION, DIS- SOLVED	PER- THANE DIS- SOLVED	TOX-APHENE, DIS-SOLVED	TRI- THION DIS- SOLVED	.000	.000	.000	.00

(UG/L)

.00

(UG/L)

.00

DATE (UG/L) (UG/L)

.00

.00

7-13-79

(UG/L)

.00

(UG/L)

.0

(UG/L)

.00

(UG/L)

TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-CULF OUTLET
295741090014200 INDUSTRIAL CANAL, 383 YARDS RIVER SIDE OF INDUSTRIAL CANAL LOCK
NATIVE SAMPLE

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
7-13-79	0937	862	7.5	<1.0	12	37000	210	100	46	22	100	5.6
DATE	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	RESIDUE AT 105 DEG. C. SUS-	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	
7-13-79	127	0	104	73	190	35	16	19	1.6	.02	.07	
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA 4 ORGANIC DIS. (MG/L AS N)	GEN, NH- + ORG.	4 NITRO GEN, T TOTAL	PHORUS TOTAL	PHOS- PHORUS, DIS- SOLVEI (MG/L AS P)	ARSENIC	
7-13-79	.07	110	.49	.51	.56	.58	1250	2.2	.21	.10	2	
DATE	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)
7-13-79	1	1	9	1	1	0	<2	0	<2	•35	<20	10
DATE	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)		COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LFAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)
7-13-79	NID	13	0	5	3	2	15	<10	5	5	ND	20
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, SUS- PENDED RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)
7-13-79	60	50	7	.1	.1	.08	3	3	ND	20	1	1
DA 7-13	(UC	M, TOT S- IN E WED TOM S/L TER	M, ZIN FAL TOT BOT- REC MA- ERA RIAL (UC	PAL PEN COV- REC BLE ERA G/L (UC	JS- VDED ZIN XOV- DI ABLE SOI G/L (UC	S- ORGAN LVED TOTA G/L (MG/ ZN) AS (NIC CYAN AL TOT /L (MG C) AS	AL TERI L (UC	TAL SOT- MA- TAL S/G PHEN CN) (UG	/L) (MG,	SE, GREA AL TOT. OV. BOT! VI- GRA RIC MET! /L) (MG/	SF, IN MAT VI- RIC

TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET
295741090014200 INDUSTRIAL CANAL, 383 YARDS RIVER SIDE OF INDUSTRIAL CANAL LOCK--CONTINUED
NATIVE SAMPLE

DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)		PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)		ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHIOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
7 - 13-79 7-13-79	 13	.0	.00	40 	.0	.00	.0	 .000	.000	.0	.0	.0
DATE	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
7-13-79 7-13-79	10	.000	.000	6.7 	.000	.000	1.4	.000	.000	.0 	.00	
DATE	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN DIS- SOLVED (UG/L)	DI- : ELDRIN : TOTAL	IOM MA- TERIAL	ENDO- SULFAN, DIS- S SOLVED (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- F SOLVED (UG/L)	INDRIN,	TERIAL S	ETHION DIS- SOLVED (UG/L)
7-13-79 7-13-79	.01	.0	 •006	.002	1.6	.000	.000	.0	.00	.00 	.0	.00
DATE	ETHION, TOTAL (UG/L)	TERIAL	DIS-	HEPTA- CHLOR, TOTAL (UG/L)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDI TOTAL (UG/L)	MATL.	: LINDANE	LINDANE TOTAL (UG/L)	LINDANF TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION DIS- SOLVED (UG/L)
7-13-79 7-13-79	.00		.00	.00	0 . 0	.000	.00			.00	0 .0 	.00
DATE	MALA- THION TOTAL (UG/L	TERIAL	DIS-	METH- OXY- CHLOR TOTAL (UG/L	MATI	N THION M DIS- SOLVE	METH: PARA- THIOI D TOTAL	TOT. I N. BOTTO L MATI	METHYL I, TRI- IN THION, IM DIS- ISOLVED	METHYL TRI - THION, TOTAL (UG/L)	METHYL TRI - THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX,
7-13-79 7-13-79	•00		.00	.0	0 .	000			.00	•00	.0	.00
DATE	MIREX, TOTAL (UG/L)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, DIS- SOLVED (UG/L)		PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PER- THANE, DIS- SOLVED (UG/L)	PER- THANE TOTAL (UG/L)	PER- THANE IN BOTTOM MATERIL (UG/KG)	TOX- APHENE, DIS- SOLVED (UG/L)		TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TRI- THION, DIS- SOLVED (UG/I.)
7-13-79 7-13-79	.00	•0 	.00	.00	.0 	.00	.00	.00	.0	.0	.0	.00

TABLE 9.--WATER-QUALITY DATA, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET
295741090014200 INDUSTRIAL CANAL LOCK, 383 YARDS RIVER SIDE OF INDUSTRIAL CANAL LOCK--CONTINUED
NATIVE SAMPLE

DATE 7-13-79 7-13-79	TOTAL TRI- THION (UG/L) .00	TRI - THION, TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	- 2,4-D, - DIS- L SOLVEI	2,4-D,	2,4-DP DIS- SOLVED (UG/L)	2, 4-D TOTAL (UG/L .00 	SOLV) (UG/ -	- 2,4,5 ED TOTA L) (UG/	L SOLVE	SILVED TOTAL) (UG/	AL FLUOR	PHYTO- PLANK- TON CHROMO OM FLUOROM L) (UG/L) 2 .000
DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	ARSENIC DIS- SOLVED (UG/L AS AS)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	
7-13 - 79	0937	380	63	1.8	2.8	4.6	8	10	0	0	6	
DATE 7-13-79	LEAD, DIS- SOLVED (UG/L AS PB)	(UG/L	MERCUR DIS- D SOLVED (UG/L	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVEL (UG/L AS ZN)	PHENOLS (UG/L)	(UG/L)	, ,	ALDRIN DIS-, SOLVED (UG/L)	CHLOR- DANF, DIS-, SOLVED (UG/L)	
1-13-19	U	4200	•0	3	1	20	2	.0	.0	.00	.0	
s	DDD, DIS- SOLVED (UG/L)		DIS- SOLVED :	DIS-' SOLVED S	LDRIN S DIS-	ENDO- ULFAN, E DIS- SOLVED (UG/L)	INDRIN, E DIS- SOLVED (UG/L)	THION, DIS- SOLVED (UG/L)	HEPTA- CHLOR, E DIS-	HEPTA- CHLOR POXIDE DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)
7-13-79	.000	.000	.000	.17	.000	.000	.000	.00	.000	.000	.000	.00
(METH- OXY- CHLOR, DIS- SOLVED (UG/L)	PARA- THION, DIS-	DIS-	MIREX, ' DIS- SOLVED S	PARA- IHION, DIS- SOLVED (UG/L)	PER- THANE A DIS- SOLVED (UG/L)	TOX- APHENE, DIS- SOLVED (UG/L)	TRI- THION DIS- SOLVED (UG/L)				

.00

7-13-79 .00

.00

.00

.00

.00

.00

TABLE 10.--WATER-QUALITY DATA, EUGENE ISLAND, ATCHAFALAYA BAY 292119091235200 GULF OF MEXICO IN ATCHAFALAYA BAY, 1.5 MILES SOUTHWEST OF EUGENE ISLAND, LA NATIVE SAMPLE

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	
10-25-79	09 30	3120	8.1	15	<1.0	600	47000	460	350	59	76	
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	
10-25-79	500	25	131	0	107	190	860	14	14	0	.00	
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO GEN AMMON: TOTAI (MG/1 AS N)	, AMMONI IA DIS- L SOLVI L (MG/I	GEN, NE TOTAL IN BOT D MAT. L (MG/KC	4 NITRO GEN CORGAN TOTA (MG/	, ORGAN IC DIS L SOLV L (MG/	, GEN,AM IC MONIA - ORGANI ED TOTAL L (MG/1	4- GEN, + MONI IC ORGA L DIS	AM- GEN, IA + + OI ANIC TOT G. BOT G/L (MC	RG. IN MAT S/KG		
10-25-79	.01	.04	1 .03	39	.4	5 .3	4 .49		.37 63	350		
DATE	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, SUS- PENDED RECOV. (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RFCOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)
10-25-79	.49	.04	.01	3	2	1	10	0	0	0	0	0
DATE	CADMIUM SUS- PENDED RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	
10-25-79	0	0	.09	10	10	0	9	0	2	1	1	
I	RI FM TOI T	M MA- ERIAL S UG/G (RON, TO DIS- RI OLVED EI UG/L (1	EAD, S OTAL PI ECOV- RI RABLE EI UG/L (I	ECOV- RABLE S JG/L (R EAD, FM DIS- TO OLVED T UG/L (ECOV. NI BOT- TO M MA- RI ERIAL EI UG/G (1	ESE, NOTAL : ECOV- PERABLE RUG/L (SUS- NI ENDED I ECOV. SO UG/L (1	ANGA- NI ESE, RI DIS- FM DIVED TOM UG/L TI	ANGA- ESE, ECOV. BOT- M MA- ERIAL IG/G)	
10-2	25-79	13	20	4	4	0	15	80	80	0	4 50	
	TO RI E () DATE A	ECOV- RABLE S UG/L (S HG) A	RCURY FM DIS- TO OLVED T UG/L (I S HG) A	BOT- TO M MA- RI ERIAL EI UG/G (I 5 HG) AS	ECOV- D RABLE S JG/L (S NI) A	CKEL, FM IS- TO OLVED T UG/L (S NI) A	M MA- N ERIAL TO UG/G (I S NI) A	ELE- : IUM, P. OTAL TO UG/L (() S SE) A	SUS- NI ENDED I OTAL SO UG/L (I S SE) A	ELE- NI IUM, TO DIS- IN OLVED TO UG/L TI S SE) (I	ELE- IUM, DTAL BOT- 4 MA- ERIAL UG/G)	
10-2	25-79	•0	.0	.05	2	4	15	0	0	0	1	

TABLE 10.--WATER-QUALITY DATA, EUGENE ISLAND, ATCHAFALAYA BAY

292119091235200 GULF OF MEXICO IN ATCHAFALAYA BAY, 1.5 MILES SOUTHWEST OF EUGENE ISLAND, LA--CONTINUED

NATIVE SAMPLE

עם	:	ZINC, TOTAL I RECOV- I ERABLE I (UG/L	RECOV- ERABLE S (UG/L	ZINC, FM DIS- TO SOLVED T (UG/L	OM MA+ OR TERIAL T (UG/G (1	OTAL '	YANIDE	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN)		GREASE, TOTAL	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)	
10-2	5-79	10	10	0	50	3.0	.00	1	2	0	0	
DATE	OXYGEN DEMAND CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB,	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERLAL (UG/KG)	PCN, DIS- SOLVED		PCN, TOTAL IN BOT- TOM MA- TERLAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	
10-25-79 10-25-79	 46	.0	.00	6	.0	.00	.0	.00	.00	.0	.0	
DATE	CHLOR DANE, TOTAL (UG/L)	TOM MA	- DDD, - DIS- L SOLVE		DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DIS-		L TER	AL DT- DD1 MA- DIS MAL SOLV	ED TOTA	L TERIAL	DI- AZINON, DIS- SOLVED (UG/L)
10-25-79 10-25-79	.0	1.0	-	•000	1.4	.00		000	.3	0	0.00	.02
DATE	DI- AZINON TOTAL (UG/L	TERIA	DI- - ELDRI - DIS- L SOLVE	ELDRII D TOTAL	TERIAL	ENDO- SULFAN DIS-	SULFA	AN, TOM I	AN, AL OT-ENDRI MA-DIS LAL SOLV	ENDRI ED TOTA	L TERIAL	ETHION DIS- SOLVED (UG/L)
10-25-79 10-25-79	.0	0 .		•00		.000		00	.0		0. 00	.00
DATE	ETHION TOTAL (UG/L	ETHION TOTAL IN BOT TOM MA	HEPTA - CHLOR - DIS- L SOLVE	, HEPTA- CHLOR D TOTAL	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL	HEPTA CHLOR EPOXID DIS-	HEPTE CHIC	HEP CHLC CA- EPOX OR TOT. IDE BOT	TA- DR IDE IN LINDA IOM DIS- IL. SOLVI	ANE - LINDA ED TOTA	LINDANE TOTAL IN BOT- NE TOM MA- NL TERIAL	MALA- THION DIS- SOLVED (UG/L)
10-25-79 10-25-79	.0				0 .0			.00	.0	.00	.00 .0	.00
DATE	MALA- THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, DIS-	METH-	CHLOR,	METHYL PARA- THION, DIS- SOLVED (UG/L)	METHYL PARA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	METHYL TRI-	METHYL TRI - THION, TOTAL	BOTTOM DI MATL. SOI	REX, IS- LVED G/L)
10-25-79 10-25-79	.00			.00	.0	.00	.00	.0	.00	.00	•0 	.00

TABLE 10.--WATER-QUALITY DATA, EUGENE ISLAND, ATCHAFALAYA BAY

292119091235200 GULF OF MEXICO IN ATCHAFALAYA BAY, 1.5 MILES SOUTHWEST OF EUGENE ISLAND, LA--CONTINUED

NATIVE SAMPLE

DATE	MIREX, TOTAI (UG/L)	L TERIAL	DIS-	PARA- THION, TOTAL (UG/L)	TERIAI	PER- THANE, DIS- L SOLVED	PER- THANE TOTAL (UG/L	MATERII		APHENE D TOTAL	, TOM MA	TRI- T- THION, A- DIS- AL SOLVED
10-25-79 10-25-79	.00	.0	.00	.00	.0	.00	.00	.00	.00 .00	.0	.00	
DATE	TOTAL TRI - THION (UG/L)	TRI - THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2,4-D, DIS- SOLVED (UG/L)	2,4-D, TOTAL (UG/L)	2,4-DP DIS- SOLVED (UG/L)	2, 4-DP TOTAL (UG/L)	2,4,5-T DIS- SOLVED (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, DIS- SOLVED (UG/L)	SILVEX, TOTAL (UG/L)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)
10-25-79 10-25-79	.00	.0	.03	.05 	.00	.00	.00	.01	.00	.00	10.3	.000
						ELUTRIATI	SAMPLE					
	TIME	SETTLE- ABLE MATTER (ML/L/	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L	PHOS- PHORUS DIS- SOLVE (MG/I	DIS- DIS- D SOLVED	BERYL C LIUM, DIS- SOLVED (UG/L	CADMIU DIS-	DIS-	, COPPER, DIS-
DATE		HR)	(MG/L)	AS N)	AS N)	AS N)	AS P)	AS AS)	AS BE)	AS CD)	AS CR	AS CU)
10-25-79 DATE	0930 LEAD, DIS- SOLVED (UG/L AS PB)	500 MANGA- NESE, DIS- SOLVEI (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L	NICKEL, DIS- SOLVED (UG/L AS NI)	.50 SELE- , NIUM, DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVED (UG/L AS ZN)	CYANIDE DIS- SOLVED (MG/L AS CN)	3 PHENOLS (UG/L)	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVED (UG/L)	ALDRIN DIS-, SOLVED (UG/L)	CHLOR-DANE, DIS-, SOLVED (UG/I.)
10-25-79	0	1200	0.0	13	0	10	.00	3	.1	.0	.000	.0
DATE	DDD, DIS- SOLVED (UG/L)	DDE, DIS- SOLVED (UG/L)	DIS-	DI- ZINON, DIS- SOLVED (UG/L)	DI- ELDRIN : DIS- SOLVED (UG/L)	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDRIN, DIS- SOLVED (UG/L)	ETHION, DIS- SOLVED (UG/L)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)
10-25-79	.000	.000	.000	.02	.000	.000	.000	.00	.000	.000	.000	.00
DATE	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	METHYL PARA- THION, DIS- SOLVED (UG/L)	DIS-	MIREX, DIS- SOLVED (UG/L)	PARA- THION, DIS- SOLVED (UG/L)	PER- THANE DIS- SOLVED (UG/L)	TOX- APHENE, DIS- SOLVED (UG/L)	TRI- THION DIS- SOLVED (UG/L)	DIS-	2, 4-DP DIS- SOLVED (UG/L)	2,4,5-T DIS- SOLVED (UG/L)	SILVEX, DIS- SOLVED (UG/L)
10-25-79	•00	.00	.00	•00	.00	.00	.0	.00	.01	.00	.00	.00

TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY

295000092180000 GULF INTRACOASTAL WATERWAY AT FORKED ISLAND, LA

DATE	TIME	SPE- CIF CON DUC ANC E (UMH	IC - I'- E P	INU H COE	AT- TU M- BI ALT IT	D- MATT Y (ML/L,	E ICA ER (HI	ND, TOTA M- IN L BOTTO GH MA- L) TERIA	AL HARI OM NESS - (MG/ AL AS	S NONCA /L BONA/ (MG)	S, CALCITAR- DIS- TE SOLV. /L (MG/	DIS- ED SOLVED L (MG/L
7- 8-81	0945	18	5 6.	9 6	0 8	0 <1.	0	41 2000	00 3	34 (0 7.	9 3.5
DATE	SODIUM DIS- SOLVEI (MG/I AS NA	DI SOL L (MG	UM, LINI S- FIE VED (MG /L AS	TY SULE LD DIS L/L SOI (MG	- DIS WED SOL :/L (MG	E, AT 1 - DEG. VED SUS /L PEND	DUE NON 05 VOL C, TIL - SUS ED PEND	- SOLI A- VOL E, TIL - SUS ED PEND	A- GEI E, NITR - TOTA ED (MG,	N, AMMO ITE DI AL SOL /L (MG	N, GEN,N NIA TOTA S- IN BO VED MAT /L (MG/K	H4 L T. S. G
7- 8-81	22	2	•5	29	2.0	30	79	53	26 .0:	3 .2	9 20	
DATE	NITE GEN ORGAN DIS SOLV (MG, AS 1	N, GEN NIC MON S- ORG VED TO /L (M	,AM- G IA + M ANIC C TAL G/L	EN,AM- G ONIA + H RGANIC T DIS. E (MG/L	OT IN P OT MAT (MG/KG	PHOS-PHORUS, TOTAL (MG/L	SOLVED (MG/L	RSENIC TOTAL (UG/L	PENDED TOTAL (UG/L	RSENIC I DIS- T SOLVED (UG/L	RSENIC TOTAL N BOT- OM MA- TERIAL (UG/G AS AS)	
7- 8-81	1.:	2 1	.6	1.5	531	.24	.13	2	0	2	0	
	DATE	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS-	RECOV.	CADMIUM TOTAL RECOV-	CADMIUM DIS- SOLVED (UG/L	TOM MA-	MIUM, TOTAL RECOV- ERABLE (UG/L	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)
7-	8-81	0	<1	1	0	<1	.08	20	20	0	0	0
ם) DATE	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	
7-	8-81	3	4	5	240	0	1	10	110	60	5 0	
D		MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, SUS- PENDED RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	
7-	8-81	230	.2	.3	.04	4	1	3	10	0	0	
Ē	DATE	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, DIS- SOLVED (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN)	PHENOLS (UG/L)	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)	
7-	8-81	0	0	20	14	2.1	.00	0	0	0	0	

TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY

295000092180000 GULF INTRACOASTAL WATERWAY AT FORKED ISLAND, LA--CONTINUED

DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
7- 8-81 7- 8-81	 39	<.1	<.1 	<1 	<0.1	<.1	<1 	<.001	<.001	<0.1	<0.1	<.1
DATE	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
7- 8-81 7- 8-81	1.0	<.001	<.001	0.7	<.001	<.001	<0.1 	<.001	<.001	<0.1 	.07	
DATE	DI- AZINON, TOTAL	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN DIS- SOLVED (UG/L)	DI- ELDRIN TOTAL	TOM MA- TERIAL	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- SOLVED (UG/L)		TOM MA- TERIAL	ETHION DIS- SOLVED (UG/L)
7- 8-81 7- 8-81	<.01	<.1 	 <.001	•004 	•5 	<.001	<.001	<0.1 	 <.001	<.001	<0.1	 <.01
		ETHION,			HEPTA- CHLOR,	HEPTA-		HEPTA- CHLOR			LINDANE	
DATE	ETHION, TOTAL (UG/L)	TOTAL IN BOT-	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)		CHLOR EPOXIDE DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDI TOTAL (UG/L)	MATL.		LINDANE TOTAL (UG/L)	TERIAL	MALA- THION DIS- SOLVED (UG/L)
DATE 7- 8-81 7- 8-81	TOTAL	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR, DIS- SOLVED (UG/L)	CHLOR, TOTAL (UG/L)	IN BOT- TOM MA- TERIAL (UG/KG)	EPOXIDE DIS- SOLVED (UG/L)	CHLOR EPOXIDI TOTAL (UG/L)	TOT. IN E BOTTOM MATL. (UG/KG)	LINDANE DIS- SOLVED (UG/L)	LINDANE TOTAL (UG/L)	IN BOT- TOM MA- TERIAL (UG/KG)	THION DIS- SOLVED (UG/L)
7- 8-81	TOTAL (UG/L)	TOTAL IN BOTTOM MATERIAL (UG/KG) <0.1 MALATHION, TOTAL IN BOTTOM	CHLOR, DIS- SOLVED (UG/L)	CHLOR, TOTAL (UG/L)	IN BOT- TOM MA- TERIAL (UG/KG)	EPOXIDE DIS-SOLVED (UG/L) 1 <.00 METHYL PARA-THION,	CHLOR EPOXIDI TOTAL (UG/L) <-00	TOT. IN BOTTOM MATL. (UG/KG) 1 <0 METHYL PARA- THION, TOT. IN BOTTOM MATL.	LINDANE DIS- SOLVED (UG/L)	LINDANE TOTAL (UG/L)	IN BOT- TOM MA- TERIAL (UG/KG)	THION DIS- SOLVED (UG/L)
7- 8-81 7- 8-81	TOTAL (UG/L) <.01 MALA-THION, TOTAL	TOTAL IN BOTTOM MATERIAL (UG/KG) <0.1 MALATHION, TOTAL IN BOTTOM MATERIAL (UG/KG) <0.1	CHLOR, DIS- SOLVED (UG/L) <.000 METH- OXY- CHLOR, DIS- SOLVED (UG/L)	CHIOR, TOTAL (UG/L) <.00 METH- CXY- CHIOR, TOTAL	IN BOTTOM MATL. (UG/KG) 1 <0. METHOXY-CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	EPOXIDE DIS- SOLVED (UG/L) 1 <.00 METHYL PARA- THION, DIS- SOLVED (UG/L)	CHLOR EPOXIDI TOTAL (UG/L) <.00 METHYI PARA-THION, TOTAL (UG/L) .01	TOT. IN BOTTOM MATL. (UG/KG) 1 <0 METHYL PARA- THION, TOT. IN BOTTOM MATL.	LINDANE DIS- SOLVED (UG/L) 1 <.00 METHYL TRI- THION, DIS- SOLVED (UG/L)	LINDANE TOTAL (UG/L) - <.0 1 METHYL TRI- THION, TOTAL	IN BOT- TOM MA- TERIAL (UG/KG) O1 < METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	THION DIS-SOLVED (UG/L) MIREX, DIS-SOLVED (UG/L)
7- 8-81 7- 8-81 DATE 7- 8-81	MALA-THION, TOTAL (UG/L)	TOTAL IN BOTTOM MATERIAL (UG/KG) <0.1 MALATHION, TOTAL IN BOTTOM MATERIAL (UG/KG) <0.1	CHLOR, DIS-SOLVED (UG/L) METH-OXY-CHLOR, DIS-SOLVED (UG/L)	CHLOR, TOTAL (UG/L) <.00 L CHLOR, TOTAL (UG/L) <.01 L CHLOR, TOTAL (UG/L)	IN BOTTOM MATL. (UG/KG) 1 <0. METHOXY-CHLOR, TOT. IN BOTTOM MATL. (UG/KG) <0.	EPOXIDE DIS- SOLVED (UG/L) 1 <.00 METHYL PARA- THION, DIS- SOLVED (UG/L) 1	CHLOR EPOXIDI TOTAL (UG/L) <.00 METHYI PARA-THION, TOTAL (UG/L) .01	TOT. IN BOTTOM MATL. (UG/KG) 1 <0 METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) <0.1 PER- THANE	LINDANE DIS- SOLVED (UG/L) 1 - <.00 METHYL TRI- THION, DIS- SOLVED (UG/L) <.01	LINDANE TOTAL (UG/L) - <.0 METHYL TRI- THION, TOTAL (UG/L) <.01	IN BOTTOM MATERIAL (UG/KG) O1 <	THION DIS- SOLVED (UG/L) 1 <.01 MIREX, DIS- SOLVED (UG/L) 1

TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY 295000092180000 GULF INTRACOASTAL WATERWAY AT FORKED ISLAND, LA--CONTINUED

NATIVE SAMPLE

DATE	TOTAL TRI- THION (UG/L)	-AM MOT	2,4-D, DIS- SOLVED (UG/L)	2,4-D, TOTAL (UG/L)	2,4-DP DIS- SOLVED (UG/L)	2, 4-DI TOTAL (UG/L)	, . S	4,5-T DIS- OLVED UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, DIS- SOLVED (UG/L)	SILVEX, TOTAL (UG/L)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)		- - O OM
7- 8-81	<.01	<.1		.14		<.01			.01		<.01	3.72	.0	00
7- 8-81			.28		<.01			.01		<.01			-	_
DATE T	IME						BOTTO	м мате	RIAL PART	ICLE SIZE	2			
JUL , 1981		AMETER (MM)	2.00	1.00	0.50		.125	0.06			0.008	0.004	0.002	0.001
08 0	945 % FI	NER BY WEIGH	т			99.9	94.5	83.0	62.0	41.5	33.0	25.0	21.5	19.5

ELUTRIATE SAMPLE

			OXYGEN	NITRO-	NITRO-	NITRO-			BERYL-	•		
			DEMAND	GEN,	GEN,	GEN, AM-	PHOS-		LIUM,		CHRO-	
		SETTLE-	CHEM-	AMMONIA	ORGANIC	MONIA +	PHORUS,	ARSENIC		CADMIUM		COPPER,
		ABLE	ICAL	DIS-	DIS-	ORGANIC	DIS-	DIS-	FM BOT-		DIS-	DIS-
		MATTER	HIGH	SOLVED	SOLVED	DIS.	SOLVED	SOLVED		- SOLVED	SOLVED	SOLVED
		(ML/L/	LEVEL	(MG/L	(MG/L	(MG/L	(MG/L	(UĢ/L	TERIAL	(UG/L	(UG/L	(UG/L
DATE	TIME	HR)	(MG/L)	as n)	AS N)	AS N)	AS P)	AS AS)	(UG/G)	AS CD)	AS CR)	AS CU)
7- 8-81	0945	440	130	.94	1.9	~-	•09	2	0	1	0	10
		MANGA-			SELE-							
	LEAD,	NESE,	MERCURY	NICKEL,	NIUM,		CYANIDE					CHLOR-
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-		PCB,	•	ALDRIN	DANE,
	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED		DIS-	DIS-	DIS-,	DIS-,
	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(MG/L	PHENOLS	SOLVED	SOLVED		SOLVED
DATE	AS PB)	AS MN)	AS HG)	AS NI)	AS SE)	AS ZN)	AS CN)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
7- 8-81	4	60	.3	7	0	20	.00	0	<.1	<.1	<.001	<.1
										HEPTA-		
				DI-	DI-	ENDO-			HEPTA-	CHLOR		mala-
	DDD,	DDE,	DDT,	AZINON,	ELDRIN	SULFAN,	ENDRIN,	ETHION,	CHLOR,	EPOXIDE	LINDANF	THION,
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-
	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	
DATE	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
7- 8-81	<.001	<.001	<.001	.03	<.001	<.001	<.001	<.01	<.001	<.001	<.001	<.01
	METH-	METHYL	METHYL				•					
	OXY-	PARA-	TRI-		PARA-	PER-	TOX-	TRI-				
	CHLOR,	THION,	THION,	MIREX,	THION,	THANE	APHENE,	THION	2,4-D,	2, 4-DP	2,4,5-T	SILVEX,
	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-	DIS-
	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	
DATE	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
7- 8-81	<.01	<.01	<.01	<.01	<.01	<.01	<.1	<.01	.26	<.01	.01	<.01

TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY

295324092262400 GULF INTRACOASTAL WATERWAY WEST OF FORKED ISLAND, LA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
7- 8-81	1040	185	6.8	70	80	<1.0	40	28000	31	10	6.4	3.6
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	
7- 8-81	22	2.3	21	9.8	35	120	88	32	.01	.23	19	
DATE	NITRO- GEN, ORGANIC DIS- SOLVEI (MG/L AS N)	GEN,AM- C MONIA + ORGANIC	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVEI (MG/L AS P)	ARSENIC	TOTAL (UG/L	ARSENIC DIS- SOLVED (UG/L AS AS)	TOM MA-		
7- 8-81		1.5	1.4	638	.13	.07	2	0	2	0		
	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- L LIUM, R DIS- FM SOLVED TO (UG/L TE	ECOV. TO BOT- RI M MA- EI RIAL (U	ECOV- I RABLE SO UG/L (U	MIUM FM DIS- TO DLVED T JG/L	RECOV. M 1 BOT- T M MA- F TERIAL E (UG/G (IUM, M OTAL ECOV- F ERABLE F UG/L (SUS- M PENDED D RECOV. S (UG/L (HRO- M IUM, R IS- FM OLVED TO UG/L T	TUM, M ECOV. H BOT- VA M MA- ERIAL (EXA- T LENT, R DIS. E UG/L (PPER, OTAL ECOV- RABLE UG/L S CU)
7- 8-81	0	<1	0	0	<1	.05	10	0	10	0	0	1
DATE	COPPER, DIS- SOLVEI (UG/L AS CU)	TOM MA- TERIAL (UG/G	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	
7- 8-81		5	180	0	0	0	10	80	60	20	300	
DATE	MERCURY TOTAL RECOV- ERABLI (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, SUS- PENDED RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	
7- 8-81		.3	.03	3	2	1	10	0	0	0	0	
	, 1	ZINC, S IOTAL PE RECOV- RE ERABLE EF (UG/L (U	COV- D' ABLE SO IG/L (U	REX NC, FM H IS- TOM IVED TEX G/L (U	MA- OR RIAL TO G/G (1	OTAL TO MG/L (N	TO IN ANIDE TOM TAL TEI AG/L (U	•	GRE TC RE CE NOLS ME	EASF, GRE DTAL TOT ECOV. BOT RAVI- GE ETRIC ME	AND EASE, IN MAT RAVI- ETRIC E/KG)	

TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY

295324092262400 GULF INTRACOASTAL WATERWAY WEST OF FORKED ISLAND, LA--CONTINUED

NATIVE SAMPLE

DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)		PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
7- 8-81 7- 8-81	 35	<.1	<.1 	<1 	<0.1	<.1 	<1 	 <.001	<.001 	<0.2 	 <.1	<.1
DATE	CHLOR-DANE, TOTAL IN BOT-TOM MA-TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
7- 8-81 7- 8-81	<1.0	 <.001	<.001	<0.1	<.001	<.001	<0.1 	<.001	<.001 	<0.1 	.01	
DATE	DI~	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI - ELDRIN DIS- SOLVED (UG/L)	DI-	IOM MA- TERIAL	•	ENDO-	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- 1 SOLVED (UG/L)	ENDRIN, '	TOM MA- TERIAL S	ETHION DIS- SOLVED (UG/L)
7- 8-81 7- 8-81	<.01	<.1	<.001	.010	.7 	 <.001	<.001	<0.1	 <.001	<.001	<0.1	<.01
	ETHION,	ETHION, TOTAL IN BOT-	HEPTA- CHLOR,	нерта-	HEPTA- CHLOR, TOTAL IN BOT-	HEPTA- CHLOR EPOXIDE	HEPTA- CHLOR	HEPTA- CHLOR EPOXIDE TOT. IN	LINDANE	LINDANE	LINDANE TOTAL IN BOT-	MALA- THION
DATE	TOTAL (UG/L)	TOM MA- TERIAL (UG/KG)	DIS- SOLVED (UG/L)	CHLOR, TOTAL (UG/L)	TOM MA- TERIAL (UG/KG)		EPOXIDE TOTAL (UG/L)	MATL.	DIS- SOLVED (UG/L)	TOTAL (UG/L)	TOM MA- TERIAL (UG/KG)	DIS- SOLVED (UG/L)
DATE 7- 8-81 7- 8-81		TERIAL	SOLVED	TOTAL	TERIAL	SOLVED	EPOXIDE TOTAL	MATL. (UG/KG)	SOLVED	TOTAL	TERIAL (UG/KG)	SOLVED
7- 8-81	(UG/L)	TERIAL (UG/KG) <0.1	SOLVED (UG/L) <.001 METH- OXY- CHLOR, DIS-	TOTAL (UG/L)	TERIAL (UG/KG) <0.1	SOLVED (UG/L) <.001 METHYL PARA- THION,	EPOXIDE TOTAL (UG/L) <.001	MATL. (UG/KG) <0.1 METHYL PARA- THION, TOT. IN BOTTON MATL.	SOLVED (UG/L) <.001 METHYL TRI- THION, DIS- SOLVED	TOTAL, (UG/L) <.001	TERIAL (UG/KG) <.1	SOLVED (UG/L)
7- 8-81 7- 8-81	(UG/L) <.01 MALA- THION, TOTAL	TERIAL (UG/KG) <0.1	SOLVED (UG/L) <.001 METH- OXY- CHLOR, DIS- SOLVED	TOTAL (UG/L) <.001 METH- OXY- CHLOR, TOTAL	TERIAL (UG/KG) <0.1 METH- OXY- CHLOR, TOT. IN BOTTOM MATL.	SOLVED (UG/L) <.001 METHYL PARA- THION, DIS- SOLVED	EPOXIDE TOTAL (UG/L) <.001 METHYI PARA- THION,	MATL. (UG/KG) <0.1 METHYL PARA- THION, TOT. IN BOTTON MATL.	SOLVED (UG/L) <.001 METHYL TRI- THION, DIS- SOLVED	TOTAL (UG/L) <.001 METHYL TRI- THION, TOTAL	TERIAL (UG/KG) <.1 METHYL TRI- THION, TOT. IN BOTTOM MATL.	SOLVED (UG/L)01 MIREX, DIS- SOLVED
7- 8-81 7- 8-81 DATE 7- 8-81	(UG/L) <.01 MALA- THION, TOTAL (UG/L)	TERIAL (UG/KG) <0.1 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <0.1	SOLVED (UG/L) <.001 METH- OXY- CHLOR, DIS- SOLVED (UG/L)	METH-OXY-CHIOR,	TERIAL (UG/KG) <0.1 METH- OXY- CHIOR, TOT. IN BOTTOM MATL. (UG/KG)	SOLVED (UG/L) <.001 METHYL PARA- THION, DIS- SOLVED (UG/L)	METHYI PARA-THION, TOTAL (UG/L)	MATL. (UG/KG) <0.1 METHYL PARA- THION, TOT. IN BOTTON MATL. (UG/KG) <0.1	SOLVED (UG/L) <.001 METHYL TRI- THION, DIS- SOLVED (UG/L) <.01	TOTAL (UG/L) <.001 METHYL TRI-THION, TOTAL (UG/L) <.01	TERIAL (UG/KG) <-1 METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG) <0.1	SOLVED (UG/L)01 MIREX, DIS-SOLVED (UG/L)

TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY 295324092262400 GULF INTRACOASTAL WATERWAY WEST OF FORKED ISLAND, LA--CONTINUED NATIVE SAMPLE

DATE 7- 8-81 7- 8-81	TOTAL TRI- THION (UG/L) <.01		2,4-D, DIS-	2,4-D TOTAL	SOLVED	2, 4-E	SOLV (UG/	2,4,5 ED TOTA 'L) (UG/	L SOLVEI L) (UG/I	SILVE TOTAL (UG/1	L FLUOF L) (UG/	O- PHYTO C- PLANK TON TO CHROM ROM FLUOR /L) (UG/	- :- :O OM
T ETAG	IME						BOTTOM N	MATERIAL P	ARTICLE S	ZE			
JUL , 1981 08 1		AMETER (M NER BY WE	•	.00 1.0	0 0.50	0.25 		0.062 0. 0.5 43.	031 0.03 5 33.0	16 0.00 28.0	8 0.004 24.5	0.002 22.5	0.001 21.0
					1	ELUTRIATE	SAMPLE						
DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIO DIS. (MG/L AS N)	PHOS- PHORUS, DIS- SOLVEI (MG/L AS P)	DIS-	BERYL LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, DIS- SOLVED (UG/L AS CU)	,
7- 8-81	1040	370	94	1.0	1.7	2.7	.05	1	0	1	10	10	
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVED (UG/L AS ZN)	CYANIDE DIS- SOLVED (MG/L AS CN)	PHENOLS (UG/L)	PCB, DIS- SOLVED (UG/L)	DIS- SOLVED	ALDRIN DIS-, SOLVED S	CHLOR- DANE, DIS-, SOLVED (UG/L)	
7- 8-81	3	10	.0	3	0	30	•00	0	<.1	<.1	<.001	<.1	

SOLVED (UG/L)

<.01

SOLVED SOLVED

(UG/L)

<.01

(UG/L)

<.01

DATE

7- 8-81

SOLVED

(UG/L)

<.01

SOLVED

(UG/L)

<.01

SOLVED

(UG/L)

<.01

SOLVED

(UG/L)

<.01

SOLVED

(UG/L)

<.1

SOLVED

(UG/L)

.07

SOLVED

(UG/L)

<.01

SOLVED

(UG/L)

.01

SOLVED

(UG/L)

<.01

TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY 295500092362700 GULF INTRACOASTAL WATERWAY NEAR GUEYDAN, LA NATIVE SAMPLE

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
7- 8-81	1135	212	6.8	60	50	<1.0	31	54000	35	14	7.5	3.9
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)		
7- 8-81	26	2.5	21	8.8	42	59	34	2 5	.75	.01		
DATE	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITROGEN, AMMONIA ORGANIO DIS. (MG/L AS N)	- GEN, NH	4 NITRO- GEN, I TOTAL	PHORUS,	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)		
7- 8-81	.23	46	1.2	1.4	1.4	1050	2.2	.15	.08	2		
DATE	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO-MIUM, SUS-PENDED RECOV. (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
7- 8-81	1	0	0	1	0	0	<1	.09	10	0	10	0
	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L	COPPER, DIS- SOLVED (UG/L	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G	IRON, DIS- SOLVED (UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L	LEAD, DIS- SOLVED (UG/L	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L	MANGA- NESE, SUS- PENDED RECOV. (UG/L	MANGA- NESE, DIS- SOLVED (UG/L	
DATE	AS CR)	AS CU)	AS CU)	AS CU)	AS FE)	AS PB)	AS PB)	AS PB)	AS MIN)	AS MIN)	AS MIN)	
	N R FM TO T	ANGA- ESE, MEI ECOV. TO BOT- RI M MA- EI ERIAL (U UG/G) AS	ECOV- I RABLE SO JG/L (U	RECURY FM DIS- TON DIVED TE	BOT- TO MA- RETAL EXECUTE (INC.)	NICKEL, SOTAL P. ECOV- R. RABLE E. UG/L (1	ECOV- DERABLE SOUG/L (US NI) AS	RECKEL, FM IS- TOW OLVED TE UG/L (U	IMA~ NI TRIAL TO TG/G (U	NI LE- S LUM, PE TAL TO G/L (U	10 LE- UM, US- NDED TAL G/L SE) 0	
	n S (ELE- NI IUM, TO DIS- IN OLVED TO UG/L TI	BOT- I MMA- SC ERIAL (I	RI INC, FM DIS- TO DLVED TI UG/L (U	MMA-OR ERIAL T NG/G (OTAL T MG/L (TO IN ANIDE TO OTAL TE MG/L (•	GRE TO RE CF ENOLS ME	ASE, GREVIAL TOI COV. BOY CAVI- GR TIRIC ME	AND ASE, IN MAT WAVI- MIRIC KG)	

TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY 295500092362700 GULF INTRACOASTAL WATERWAY NEAR GUEYDAN, IA--CONTINUED NATIVE SAMPLE

DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
7- 8-81 7- 8-81	 36	 <.1	<.1	<1 	<0.1	<.1	<1 	<.001	<.001	<0.1	<0.1	<.1
DATE	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
7- 8-81 7- 8-81	3	 <.001	<.001	2.0	<.001	<.001	0.3	<.001	<.001 	<0.1	.04	
DATE	DI- AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN DIS- SOLVED (UG/L)	DI-	TOM MA- TERIAL	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- SOLVED (UG/L)	FNDRIN, TOTAL (UG/L)	TOM MA-	ETHION DIS- SOLVED (UG/L)
7- 8-81 7- 8-81	<.01	<.1	<.001	.007 	.2	<.001	<.001	<0.1	<.001	<.001	<0.1	 <.01
DATE	ETHION, TOTAL (UG/L)	TERIAL	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	TOM MA- TERIAL	DIS-	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	TOT. IN BOTTON MATL	DE N LINDANE M DIS- . SOLVED	LINDANE TOTAL	TERIAI	MALA- THION DIS- SOLVED
7- 8-81 7- 8-81	<.0	l <0.1	<.001	<.001	<0.1	<.001	<.001	(0.1 	 <.001	<.001	<.1	.02
DATE	MALA- THION TOTAL (UG/L)	TERIAL	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	METH- OXY- CHLOR, TOTAL (UG/L)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)		METHYI PARA- THION,	TOT. II BOTTOM MATL	THION, DIS- SOLVED	METHYL TRI - THION, TOTAL (UG/L)	METHYL TRI- THION, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, DIS- SOLVED (UG/L)
7- 8-81 7- 8-81	.03	3 <0.	1 <.01	<.01	<0. 	1 <.01	<.01	<0.1	<.01	<.01	<0.1	 <.01
		MIREX,	PARA-		PARA- THION, TOTAL	PER-		PER- THANE	TOX-		TOXA- PHENE, TOTAL	TRI-
DATE	MIREX, TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	THION, DIS- SOLVED (UG/L)	PARA- THION, TOTAL (UG/L)	IN BOT- TOM MA- TERIAL (UG/KG)	THANE, DIS- SOLVED (UG/L)	PER- THANE TOTAL (UG/L)	IN BOTTOM MATERIL (UG/KG)	APHENE, DIS- SOLVED (UG/L)	TOX- APHENE, TOTAL (UG/L)	IN BOT- TOM MA- TERIAL (UG/KG)	THION, DIS- SOLVED (UG/L)

TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY 295500092362700 GULF INTRACOASTAL WATERWAY NEAR GUEYDAN, IA--CONTINUED NATIVE SAMPLE

DATE 7- 8-81 7- 8-81	TOTAL TRI- THION (UG/L) <.01	TRI - THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <.1	2,4-D, DIS- SOLVED (UG/L)	2,4-D, TOTAL (UG/L) .02	2,4-DP DIS- SOLVED (UG/L)	2, 4-D TOTAL (UG/L <.0	SOLA) (UG/ 1 -	S- 2,4,5 /ED TOTA /L) (UG/	L SOLVE L) (UG/ 01 -	S- SILVI ID TOTI 'L) (UG,	AL FLUOR /L) (UG/ .01 4.	- PHYTC - PLANN TON O CHROM OM FLUOR L) (UG/)- (- 10 XOM
DATE TIME	E					В	OTTOM MAT	TERIAL PAR	TICLE SIZ	že			
JUL , 1981 08 1139		ETER (MM) R BY WEIGH	2.00 TT	1.00		0.25 0. 9.9 96.	125 0.0 0 88.5		0.016 44.0	0.008 33.5	0.004 26.5	0.002 23.0	0.001 22.0
					EL	JIRIATE S	AMPLE						
DATE	М (М	DEM TTLE- CH ABLE IC VATTER HI L/L/ LEV	AND C EM- AMM AL I GH SC EL (M	EEN, (NONIA ORO DIS- I DLVED SO NG/L (1	GEN, GE GANIC MO DIS- OF DLVED I MG/L	NITRO- EN, AM- DNIA + RGANIC DIS. (MG/L AS N)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	ARSENIC DIS- SOLVED (UG/L AS AS)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	CADMIUM DIS- SOLVED (UG/L AS CD)	DIS-	COPPER, DIS- SOLVED (UG/L AS CU)	
7- 8-81	1135	375	.00	1.9	1.0	2.9	.09	2	0	1	10	5	
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVED (UG/L AS ZN)	(MG/L AS CN)	PHENPLS (UG/L)	(UG/L)	PCN, DIS- SOLVED (UG/L)	(UG/L)	CHLOR- DANE, DIS-, SOLVED (UG/L)	
7- 8-81	3	530	.0	2	0	40	.00	0	<.1	<.1 MEDITA_	<.001	<.1	
Dame	DDD, DIS- SOLVED	DDE, DIS- SOLVED	DDT, A DIS- SOLVED	DI- AZINON, DIS- SOLVED	DI- ELDRIN DIS- SOLVED	ENDO- SULFAN, DIS- SOLVED	ENDRIN, DIS- SOLVED	ETHION, DIS- SOLVED	HEPTA- CHLOR, DIS- SOLVED	HEPTA- CHLOR EPOXIDE DIS- SOLVED	DIS-	MALA- THION, DIS- SOLVED	

DATE

7- 8-81

DATE

7- 8-81

(UG/L)

<.001

METH-

OXY-

CHLOR,

(UG/L)

<.01

(UG/L)

<.001

METHYL

PARA~

THION,

(UG/L)

<.01

DIS- DIS-SOLVED SOLVED (UG/L)

<.001

METHYL

TRI-

THION,

DIS-SOLVED

(UG/L)

<.01

(UG/L)

.06

MIREX,

DIS-SOLVED

(UG/L)

<.01

(UG/L)

<.001

PARA-

THION,

DIS-

SOLVED

(UG/L)

<.01

(UG/L)

<.001

PER-

THANE

DIS-

SOLVED

(UG/L)

<.01

(UG/L)

<.001

TOX-

DIS-

SOLVED

(UG/L)

<.1

APHENE,

(UG/L)

<.01

TRI-

THION

DIS-

SOLVED

(UG/L)

<.01

(UG/L)

<.001

2,4-D,

DIS-

SOLVED

(UG/L)

.15

(UG/L)

<.001

2, 4-DP

DIS-SOLVED

(UG/L)

<.01

(UG/L)

.08

SILVEX,

DIS-SOLVED

(UG/L)

<.01

(UG/L)

<.001

2,4,5-T

DIS-

SOLVED

(UG/L)

<.01

TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY

295751092453900 GULF INTRACOASTAL WATERWAY, AT MILE 200, NEAR LAKE ARTHUR, LA

DATE	TIME	SPE- CIFI CON- DUCT ANCE (UMHC	C - PF) I H C	OLOR PLAT- NUM- OBALT NITS)	TUR- BID- ITY (NTU)	SETTLE- ABLE MATTER (ML/L/ HR)	IC	AND, EM- AL IGH EL)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD NESS NONCA BONAT (MG/ CACO	, CAL R- DI E SC L (M	CIUM :S- DLVED IG/L S CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
7- 8-81	1230	19	0 7.	.2	50	30	<1.0	39	9	5200	40	0		9.9	3.6
DATE	SODI DIS SOLV (MG AS	- ED /L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFA DIS- SOLVI (MG/I AS SO	TE RI DI ED SO L (M	LO- RE DE, AT S- DE LVED S G/L PE	LIDS, SIDUE 105 G. C, US- NDED MG/L)	SOLII NON- VOLA TILA SUS- PENDA (MG/	SOLI A- VOI E, TII - SUS ED PENI	A- (E, NIT G- T()ED (M	GEN, TRATE N OTAL MG/L	NITRO- GEN, ITRITE TOTAL (MG/L AS N)		
7- 8-81		21	2.5	46	6.	4	26	32		15	17	.30	.02		
DATE	NIT GE AMMO DI SOL (MG AS	N, G NIA S- I VED /L (NITRO- EN, NH4 TOTAL N BOT. MAT. MG/KG AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	ORGAN:	M- GE + MO IC OR L D L (i	N,AM- G NIA + + GANIC T IS. B MG/L	NITRO- EN, NH4 ORG. OT IN OT MAT (MG/KG AS N)	GI TO	EN, PHO FAL TO G/L (M	HOS- PH DRUS, DTAL S MG/L (PHOS- HORUS, DIS- BOLVED (MG/L AS P)	ARSENIC TOTAL (UG/L AS AS)		
7- 8-81		23	10	.77	1.:		1.0	128		, . <u>.</u> L.6	.34	.19	4		
1	RSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSE DI	TO INIC IN S- TON IVED TH	DTAL BOT- 1 MA- ERIAL JG/G	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL LIUM, DIS- SOLVE (UG/L AS BE	RECO FM BO D TOM M TERIA	, CAI V. TC T- RI A- EI L (U	OMIUM OTAL ECOV- RABLE UG/L S CD)	CADMIUN DIS- SOLVEI (UG/L AS CD)	M RECOVER FM BC TOM M TERIA	OT-REC NA-ERA NL (UG	M, PAL OV- BLE /L	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
7- 8-81	1		3	0	0	<1	0		0	<1	.03	3	10	0	0
DATE	CHR MIU HEX VALE DI (UG AS	M, C A- NT, S. /L	OPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPEI RECOV FM BOY TOM MA TERIA (UG/V AS CI	V. I- IR A- D AL SO G (U	ON, T IS- R LVED E G/L (EAD, OTAL ECOV- RABLE UG/L S PB)	LEAL DIS SOLV (UG/ AS I	O, FM E S- TOM /ED TEF /L (UC	COV. NE SOT- TO MA- RE RIAL EF G/G (U	ese, DTAL ECOV- RABLE UG/L	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANG NESE DIS SOLV (UG/ AS M	, - ED L
7- 8-81		0	0	4	:	2	560	0		1	10	110	60	5	0
1	DATE	MANG NESE RECO FM BO TOM M TERI (UG/	MERC V. TO: VI- REC IA- ERA AL (UC	TAL ME COV- ABLE S G/L (RCURY 1	MERCURY RECOV. FM BOT- IOM MA- TERIAL (UG/G AS HG)	NICKEL TOTAL RECOV ERABL (UG/L AS NI	PEI - REX E ERA (UX	KEL, US- NDED COV- ABLE G/L NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAI (UG/G AS NI)	- SELE - NIUM L TOTA (UG/	NI S PE L TO L (U	CLE- CUM, CUS- CNDED OTAL IG/L S SE)	
7-	8-81	3	20	.2	.3	.02	5		3	2	10		0	0	
1	DATE	SELE NIUM DIS SOLV (UG/ AS S	- NIU I, TOT I- IN I TED TOM IL TEI	PAL Z BOT- MA- S RIAL (ZINC, RECOV. FM BOT- IOM MA- TERIAL (UG/G AS ZN)	CARBON ORGANI TOTAL (MG/L AS C)	C CYAN TO: (MC	NIDE FAL G/L CN)	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN)	PHENOLS	METR	E, GRE L TOI V. BOI I- GR IC ME	AND ASE, IN MAT AVI- TRIC K(KG)	
7-	8-81		0	0	20	5	9.1	•	.00	0	1		0	0	

TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY

295751092453900 GULF INTRACOASTAL WATERWAY, AT MILE 200, NEAR LAKE ARTHUR, LA--CONTINUED

NATIVE SAMPLE

DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)		PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	AIDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHIOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
7- 8-81 7- 8-81	41	<.1	<.1	<1 	<0.1	<.1	<1	<.001	<.001	<0.1	<0.1	<.1
DATE	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
7- 8-81 7- 8-81	<1 	 <.001	<.001	<.1	 <.001	<.001 	<.1 	 <.001	<.001	<0.1	.04	
DATE	DI - AZINON, TOTAL (UG/L)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI - ELDRIN DIS- SOLVED (UG/L)	DI-	TOM MA- TERIAL :	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDO-	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- 1 SOLVED (UG/L)		TOM MA- TERIAL	ETHION DIS- SOLVED (UG/L)
7- 8-81 7- 8-81	<.01	<.1	.001	<.001	<.1	<.001	<.001	<0.1	<.001	<.001	<0.1	<.01
					HEPTA-			HEPTA-				
DATE	ETHION TOTAL (UG/L)	TERIAL	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR, TOTAL (UG/L)	CHLOR, TOTAL IN BOT-	DIS-	HEPTA- CHLOR EPOXIDE TOTAL (UG/L)	CHLOR EPOXII TOT. IN BOTTON MATL	DE N LINDANE M DIS- N SOLVED	LINDANE TOTAL (UG/L)	LINDANE TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION DIS-
DATE 7- 8-81 7- 8-81	TOTAL	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR, DIS- SOLVED (UG/L)	CHLOR, TOTAL	CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR EPOXIDE DIS- SOLVED (UG/L)	CHLOR EPOXIDE TOTAL	CHLOR EPOXII TOT. IN BOTTOM MATL. (UG/KG)	DE N LINDANE M DIS SOLVED (UG/L)	LINDANE TOTAL (UG/L) <.001	TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	MALA- THION DIS- SOLVED
7- 8-81	TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) 1 <0.1 MALA- THION, TOTAL IN BOT- TOM MA- TERIAL	CHLOR, DIS- SOLVED (UG/L) <.001 METH- OXY- CHLOR, DIS-	CHLOR, TOTAL (UG/L) <.001	CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <0.1 METH- OXY- CHLOR, TOT. IN BOTTOM MATL.	CHLOR EPOXIDE DIS- SOLVED (UG/L) <.001 METHYL PARA- THION,	CHLOR EPOXIDE TOTAL (UG/L) <.001 METHY! PARA- THION	CHLOR EPOXII TOT. IN BOTTOM MATL. (UG/KG) (UG/KG) METHYL PARA- THION TOT. II BOTTOM MATL.	DE LINDANE DIS- SOLVED (UG/L) <.001 METHYL TRI- N THION, DIS- SOLVED	LINDANE TOTAL (UG/L) <.001	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <.1	MALA- THION DIS- SOLVED (UG/L)
7- 8-81 7- 8-81	TOTAL (UG/L) <.01 MALA- THION TOTAL	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) 1 <0.1 MALA- THION, TOTAL IN BOT- TERIAL (UG/KG) 1 (UG/KG) 1 0.1	CHLOR, DIS- SOLVED (UG/L) <.001 METH- OXY- CHLOR, DIS- SOLVED (UG/L)	CHLOR, TOTAL (UG/L) <.001 METH- OXY- CHLOR, TOTAL	CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <0.1 METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	CHIOR EPOXIDE DIS- SOLVED (UG/L) <.001 METHYL PARA- THION, DIS- SOLVED (UG/L)	CHLOR EPOXIDE TOTAL (UG/L) <.001 METHY) PARA- THION TOTAL (UG/L)	CHLOR EPOXII TOT. IT BOTTON MATL. (UG/KG) METHYL PARA- THION TOT. II BOTTON MATL. (UG/KG)	METHYL, TRI- N THION, DIS- SOLVED (UG/L)	LINDANE TOTAL (UG/L) <.001 METHYL TRI- THION, TOTAL	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <.1 METHYL TRI- THION, TOT. IN BOTTOM MATL.	MALA- THION DIS- SOLVED (UG/L)01 MIRFX, DIS- SOLVED
7- 8-81 7- 8-81 DATE 7- 8-81	TOTAL (UG/L) <.0: MALA- THION TOTAL (UG/L	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) 1 <0.1 MALA- THION, TOTAL IN BOT- TERIAL (UG/KG) 1 (UG/KG) 1 0.1	CHLOR, DIS- SOLVED (UG/L) <.001 METH- OXY- CHLOR, DIS- SOLVED (UG/L)	CHLOR, TOTAL (UG/L) <.001 METH- OXY- CHLOR, TOTAL (UG/L)	CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <0.1 METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	CHIOR EPOXIDE DIS- SOLVED (UG/L) <.001 METHYL PARA- THION, DIS- SOLVED (UG/L)	CHLOR EPOXIDE TOTAL (UG/L) <.001 METHY) PARA- THION TOTAL (UG/L)	CHLOR EPOXII TOT. IT BOTTON MATL (UG/KG) METHYL PARA- THION TOT. II BOTTOI MATL (UG/KG)	METHYL, TRI- N THION, M DIS- SOLVED (UG/L)	LINDANE TOTAL (UG/L) <.001 METHYL TRI- THION, TOTAL (UG/L)	TOTAL IN BOT- TOM MA- TERIAL (UG/KG) <.1 METHYL TRI- THION, TOT. IN BOITOM MATL. (UG/KG)	MALA-THION DIS-SOLVED (UG/L) MIREX, DIS-SOLVED (UG/L)

TABLE 11.--WATER-QUALITY DATA, GULF INTRACOASTAL WATERWAY 295751092453900 GULF INTRACOASTAL WATERWAY, AT MILE 200, NEAR LAKE ARTHUR, LA--CONTINUED NATIVE SAMPLE

DATE	TOTAL TRI- THION (UG/L)	TRI - THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2,4-D, DIS- SOLVED (UG/L)	2,4-D, TOTAL (UG/L)	2,4-DP DIS- SOLVED (UG/L)	2, 4-DP TOTAL (UG/L)	2,4,5-T DIS- SOLVED (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, DIS- SOLVED (UG/L)	SILVEX, TOTAL (UG/L)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/I.)
7- 8-81 7- 8-81	<.01 	<.1 	.13		<.01		.02		 <.01		3.60 	.000

DATE TIME BOTTOM MATERIAL PARTICLE SIZE

JUL , 1981 DIAMETER (MM) 2.00 1.00 0.50 0.25 0.125 0.062 0.031 0.016 0.008 0.004 0.002 0.001 08... 1230 % FINER BY WEIGHT -- 99.9 99.8 96.0 79.5 34.0 17.5 14.0 12.5 11.5 11.0 11.0

ELUTRIATE SAMPLE

DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	DIS-	FM BO	7. CADMIUN P- DIS- A- SOLVED L (UG/L	CHRO- MIUM, DIS- SOLVEI (UG/L AS CR)	COPPER, DIS- DIS- COLVED (UG/L
7- 8-81	1230	900	43	.57	1.0		.03	1	0	0	0	9
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	ZINC, DIS- SOLVED (UG/L AS ZN)	CYANIDE DIS- SOLVED (MG/L AS CN)	PHENOLS (UG/L)	PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVED (UG/L)	ALDRIN DIS-, SOLVED (UG/L)	CHIOR- DANE, DIS-, SOLVED (UG/L)
7- 8-81	1	160	.2	1	0	20	.00	4	<.1	<.1	<.001	<.1
DATE	DDD, DIS- SOLVED (UG/L)	DDE, DIS- SOLVED (UG/L)	DDT, DIS- SOLVED (UG/L)	DI- AZINON, DIS- SOLVED (UG/L)	DI- ELDRIN DIS- SOLVED (UG/L)	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDRIN, DIS- SOLVED (UG/L)	ETHION, DIS- SOLVED (UG/L)	HEPTA- CHLOR, DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)
7- 8-81	<.001	<.001	<.001	.05	.001	<.001	<.001	<.01	<.001	<.001	<.001	<.01
DATE	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	METHYL PARA- THION, DIS- SOLVED (UG/L)	METHYL TRI- THION, DIS- SOLVED (UG/L)	MIREX, DIS- SOLVED (UG/L)	PARA- THION, DIS- SOLVED (UG/L)	PER- THANE DIS- SOLVED (UG/L)	TOX- APHENE, DIS- SOLVED (UG/L)	TRI- THION DIS- SOLVED (UG/L)	2,4-D, DIS- SOLVED (UG/L)	2, 4-DP DIS- SOLVED (UG/L)	2,4,5-T DIS- SOLVED (UG/L)	SILVEX, DIS- SOLVED (UG/L)
7- 8-81	<.01	<.01	<.01	<.01	<.01	<.01	<.1	<.01	.14	<.01	.02	.01

TABLE 12.--WATER-QUALITY DATA, CALCASIEU SHIP CHANNEL, GULF SECTION

293512093174200 GULF OF MEXICO 300 YARDS SOUTHEAST OF CALCASIEU SHIP CHANNEL AT MILE -12.0, NEAR CAMERON, LA
NATIVE SAMPLE

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	COLOR (PLAT- INUM- COBALT UNITS)	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
10-18-79	1024	41800	8.2	5	<1.0	750	14000	5300	5100	290	1100	8400
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, NON- VOLA- TILE, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, SUS- PENDED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	
10-18-79	450	140	0	115	2400	16000	68	32	36	.00	.01	
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, NH4 TOTAL IN BOT. MAT. (MG/KG AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L, AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN,NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	NITRO- GEN, TOTAL (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	
10-18-79	.08	.08	20	.32	.27	.40	.35	2600	.40	.03	.02	
DATE	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENDED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, SUS- PENDED RECOV. (UG/L AS CR)
10-18 - 79	2	1	1	0	10	10	0	0	1	.02	30	20
DATE	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CHRO- MIUM, HEXA- VALENT, DIS. (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, SUS- PENDED RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, SUS- PENDED RECOV- ERABLE (UG/L AS PB)	LFAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)
10-18-79	10	4	0	1	1	0	3	140	24	24	0	0
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, SUS- PENDED RECOV. (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	SEIE- NIUM, TOTAL (UG/L AS SE)	SFLE- NIUM, SUS- PENDED TOTAL (UG/L AS SE)
10-18-79	40	10	30	190	.0	.1	.01	2	4	0	0	0
DATE	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, SUS- PENDED RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G AS CN)	PHENOIS (UG/L)	OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (MG/L)	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)
10-18-79	0	0	40	20	20	10	2.5	.00	0	2	0	0

TABLE 12.--WATER-QUALITY DATA, CALCASIEU SHIP CHANNEL, GULF SECTION

293512093174200 GULF OF MEXICO 300 YARDS SOUTHEAST OF CALCASIEU SHIP CHANNEL AT MILE -12.0, NEAR CAMERON, LA--CONTINUED

NATIVE SAMPLE

DATE	OXYGEN DEMAND, CHEM- ICAL (HIGH LEVEL) (MG/L)	PCB, DIS- SOLVED (UG/L)	PCB, TOTAL (UG/L)	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PCN, DIS- SOLVED (UG/L)	NAPH- THA- LENES, POLY- CHLOR. TOTAL (UG/L)	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALDRIN, DIS- SOLVED (UG/L)	ALDRIN, TOTAL (UG/L)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- DANE, DIS- SOLVED (UG/L)	CHLOR- DANE, TOTAL (UG/L)
10-18-79 10-18-79	1200	.0	.00	3	.0	.00	.0	.000	.000	.0 	.0	.0
DATE	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDD, DIS- SOLVED (UG/L)	DDD, TOTAL (UG/L)	DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDE, DIS- SOLVED (UG/L)	DDE, TOTAL (UG/L)	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DDT, DIS- SOLVED (UG/L)	DDT, TOTAL (UG/L)	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- AZINON, DIS- SOLVED (UG/L)	
10-18-79 10-18-79	.0 	.000	.000	<u>.2</u>	.000	.000	•2 	.000	.000	.0 	.04	
DATE	DI-	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN DIS- SOLVED (UG/L)	DI-	TOM MA-	ENDO- SULFAN, DIS- SOLVED (UG/L)	ENDO- SULFAN, TOTAL (UG/L)	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN, DIS- SOLVED (UG/L)	ENDRIN, '	TOM MA-	ETHION DIS- SOLVED (UG/L)
10-18-79 10-18-79	•00 	<u>.0</u>	.000	•000 	.0 	.000	.000	.0 	.00	•00 ~-	.0 	.00
DATE	ETHION, TOTAL (UG/L)	ETHION, TOTAL IN BOT- TOM MA- TERIAL	HEPTA- CHLOR, DIS- SOLVED	HEPTA- CHLOR,	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAI	DIS-	EPOXIDE	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL.	LINDANE	LINDANE TOTAL		MALA- - THION - DIS-
	(00/11)		(UG/L)	(UG/L)	(UG/KG)	SOLVED (UG/L)	TOTAL (UG/L)		(UG/L)	(UG/L)	TERIAI (UG/KG)	
10-18-79 10-18-79	.00	(UG/KG)		(UG/L)	(UG/KG)		(UG/L)	(UG/KG)		(UG/L)		(UG/L)
	•00	(UG/KG) .0 .MALA- THION, TOTAL IN BOT- , TOM MA- TERIAL	(UG/L)00 METH- OXY- CHLOR, DIS-	(UG/L)	(UG/KG) .0 METH- OXY- CHLOR, TOT. IN	(UG/L) 00 METHYL PARA- I THION, DIS- SOLVED	.000 0	METHYL PARA-THION, TOT. IN BOTTOM MATL.	(UG/L)00 METHYL TRI- THION,	(UG/L)	(UG/KG)	(UG/L)
10-18-79	 	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH-OXY-CHLOR, DIS-SOLVED (UG/L)	(UG/L) .000 0 METH- OXY- CHLOR, TOTAL	METH- OXY- CHLOR, TOT: IN BOTTON MATT (UG/KG)	(UG/L)	(UG/L) .000 0 METHYI PARA- THION, TOTAL	METHYL PARA- L THION, TOT. IN BOTTOM MATL. (UG/KG)	(UG/L) 00 METHYL, TRI- THION, DIS- SOLVED (UG/L)	(UG/L) .000 0 METHYL TRI- THION, TOTAL	(UG/KG) .0 METHYL TRI- THION, TOT. IN BOTTOM MATL.	(UG/L)00 MIREX, DIS- SOLVED
10-18-79 DATE 10-18-79	MALA-THION, TOTAL (UG/L)	MALA- THION, TOTAL IN BOT- TERTAL (UG/KG)	(UG/L) 00 METH- OXY- CHLOR, DIS- SOLVED (UG/L)	(UG/L) .000 0 METH- OXY- CHLOR, TOTAL (UG/L) .00	METH- OXY- CHLOR, TOT: IN BOTTON MATT (UG/KG)	(UG/L)	(UG/L) .000 .000 .000 METHYI PARA- THION, TOTAL (UG/L)	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG) D PER- THANE	(UG/L) 00 MEIHYL TRI- THION, DIS- SOLVED (UG/L)00 TOX- APHENE,	(UG/L) .000 0 METHYL TRI- THION, TOTAL (UG/L) .00	METHYL TRI- THION, TOT. IN BOITOM MATL. (UG/KG)	MIREX, DIS- SOLVED (UG/L)

TABLE 12.--WATER-QUALITY DATA, CALCASIEU SHIP CHANNEL, GULF SECTION

293512093174200 GULF OF MEXICO 300 YARDS SOUTHEAST OF CALCASIEU SHIP CHANNEL AT MILE -12.0, NEAR CAMERON, IA--CONTINUED

NATIVE SAMPLE

DATE	TOTAL I TRI- T THION	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	2,4-D, DIS- SOLVED (UG/L)	2,4-D, TOTAL (UG/L)	2,4-DP DIS- SOLVED (UG/L)	2, 4-DP TOTAL (UG/L)	2,4,5-T DIS- SOLVED (UG/L)	2,4,5-T TOTAL (UG/L)	SILVEX, DIS- SOLVED (UG/L)	SILVEX, TOTAL (UG/L)	CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)	CHLOR-B PHYTO- PLANK- TON CHROMO FLUOROM (UG/L)
10-18-79	.00	.0		1.3		.00		.04		.00	2.29	.000
10-18-79			1.0		.00		.03		.00			
DATE TIME						BOTTO	MATERIAI	PARTICLE	SIZE			
СТ , 1979 18 1024	DIAMETER (2.00 99.0	1.00 0. 98.0 97.		0.125 93.0			.016 0.	.008 0.0 .0 27.0		2 0.001 23.5

ELUTRIATE SAMPLE

DATE	TIME	SETTLE- ABLE MATTER (ML/L/ HR)	OXYGEN DEMAND CHEM- ICAL HIGH LEVEL (MG/L)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN, ORGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	ARSEN DIS- SOLVE (UG/L AS AS	DIS- D SOLVED (UG/L	CADMIT DIS- SOLVEI (UG/L AS CD)	DIS- SOLVE (UG/L	DIS- D SOLVE (UG/L	r D
10-18-79	1024	610	800	1.3	.50	1.8	5	0	1	20	0	
DATE	LEAD, DIS- SOLVE (UG/L AS PB	(UG/I	MERCUF DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	(UG/L	DIS- SOLVED (MG/L		PCB, DIS- SOLVED (UG/L)	PCN, DIS- SOLVEI (UG/L)	DIS-,	CHLOR- DANE, DIS-, SOLVED (UG/L)
10-18-79	.0	540	.1	0	0	20	.00	4	•0	.0	.000	.0
DATE 10-18-79	DDD, DIS- SOLVED (UG/L)	DDE, DIS- SOLVED (UG/L)	DIS-	DIS-	ELDRIN S DIS-	ENDO- SULFAN, E DIS- SOLVED (UG/L)	ENDRIN, DIS- SOLVED (UG/L)	ETHION, DIS-	HEPTA- CHLOR, I DIS- SOLVED (UG/L)	HEPTA- CHLOR EPOXIDE DIS- SOLVED (UG/L)	LINDANE DIS- SOLVED (UG/L)	MALA- THION, DIS- SOLVED (UG/L)
DATE	METH- OXY- CHLOR, DIS- SOLVED (UG/L)	METHYL PARA- THION, DIS- SOLVED (UG/L)	METHYL TRI- THION, DIS- SOLVED (UG/L)	MIREX, DIS- SOLVED (UG/L)	PARA- THION, DIS-	PER-	TOX- APHENE, DIS- SOLVED (UG/L)	TRI- THION DIS-	2,4-D, : DIS- SOLVED :	2, 4-DP DIS- SOLVED (UG/L)	2,4,5-T DIS- SOLVED (UG/L)	SILVEX, DIS- SOLVED (UG/L)
10-18-79	.00	.00	.00	.00	.00	.00	.0	.00	-90	.00	.02	.01

HYDROLOGIC DATA--Continued

Part C: Data For Proposed Ocean-Disposal Areas (Tables 13-16)

TABLE 13.--WATER-QUALITY DATA, MISSISSIPPI RIVER-GULF OUTLET

OF	292730089070500 GULF OF MEXICO 3.5 MILES WEST OF MISSISSIPPI RIVER-GULF OUTLET AT MILE -5.0	(BRETON SOUND), NEAR HOPEDALE, LA
	OF ME	
	292730089070500	

LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	0	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	0.	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.
COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G	н	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.	HEPTA- HE CHLOR, CG TOTAL ERC IN BOT- TOT TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TERIAL (UG/KG) (UG/KG)	0.	TOXA- PHENE, TI TOTAL IN BOT- IN TOM MA- TO TERLAL TIGG/KG) (U	0.
CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	0	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.	ETHION, CA TOTAL TOTAL IN BOT- IN TOM MA- TO TOM (UG/KG) (UG/KG)	0.	E OM RIL KG)	00.
CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G	.01	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0	ENDRIN, ETH TOTAL TK IN BOT- IN TOM WA- TO TERIAL TI (UG/KG) (UK	0.	PARA- THION, PER- TOTAL THAN IN BOT- IN TERIAL MATE (UG/KG) (UG/	0.
BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	0	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)	0	ENDO- SULFAN, EN TOTAL TY IN BOT- IN TOM MA- TOO TERIAL T	0.	MIREX, TI TOTAL TOTAL TO IN BOT- IN TOM MA- TO TERLAL TO (UC/KG) (UC/KG)	0.
ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G	4	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G	0	DI- ES ELDRIN, SUI TOTAL T IN BOY- IN TOM MA- TOM TERIAL TI (UG/KG) (U	0.	METHYL TRI- M. THION, TG TOT. IN IN BOTTOM TO MATL. TI (UG/KG) (U	0.
NITRO- GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	1590	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G	ю	DI- I AZINON, ELI TOTAL T IN BOT- IN TOM MA- TO TERIAL T (UG/KG) (U	0.	METHYL M PARA- THION, TI TOT. IN TO BOTTOM B MATT. I	0,
NITRO- GEN, NH4 TOTAL IN BOT. MAT. (MG/KG	14	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	0	DDT, AZJ TOTAL TC IN BOT- IN TOM MA- TOM TERLAL TT (UG/KG) (U	0.	METH- MECONY- PUCHLOR, THE TOT. IN TOO BOTTOM BY MATT. (UG/KG) (UG/KG)	0.
SOLIDS, VOLA- TILE IN BOTTOM MA- TERIAL (MG/KG)	25000	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G	7	DDE, I TOTAL TO IN BOT- IN TOM MA- TOW TERLAL TE	0.	MALA- ME THION, ON TOTAL CF IN BOT- TOO TOOM MA- BC TERLAL IN (UC/KG) (UC	0.
C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	2600	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G	.01	DDD, I TOTAL TO IN BOT- IN TOM MA- TOW TERLAL TE	0.	LINDANE TE TOTAL TO TOTAL TO TOW MA- TOW MA- TOW MG- TERLAL TERLAL TERLAL (UG/KG) (UC	0.
TIME	1215	MANGA- NESE, RECOV. EM BOT- TOM MA- TERIAL (UG/G)	46	DATE (UG	62-0	LIN TO TOW TOW THE	62-0
DATE	10-30-79	DATE	10-30-79	2	10-30-79	a	10-30-79

0.125 0.062 0.031 0.016 0.008 0.004 0.002 0.001 81.0 11.5 -- -- -- -- -- --

2.00 1.00 0.50 0.25 -- -- 99.0 96.0

OCT , 1979 DIAMETER (MM) 30... 1215 % FINER BY WEIGHT

TIME

DATE

BOTTOM MATERIAL PARTICLE SIZE

102

TABLE 14.--WATER-QUALITY DATA, SOUTHWEST PASS

285338089254800 GULF OF MEXICO 400 YARDS EAST OF SOUTHWEST PASS, AT MILE 21.0 (BHP), NEAR BURRWOOD, LA

LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	25	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.6	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	0.	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.
COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	16	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.	HEPTA- HE CHLOR, CH TOTAL, EPC IN BOT- TOT IOM MA- BO TERIAL M TERIAL M	0.	TOXA- T PHENE, TH TOTAL. TO IN BOT- IN TOM MA- TOW TERIAL TE	0•
CHRO- MIUM, REGOV. FM BOT- TOM MA- TERIAL (UG/G)	12	PCN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.	HE ETHION, CHATCHEL TOTAL TOTAL TO NA TOM MATTERIAL TERIAL	0.	E OM RIL KG)	00.
CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	.17	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	21	ENDRIN, ETH TOTAL TO IN BOT- IN TOM MA- TOW TERIAL TH (UG/KG) (UG	0.	PARA- THION, PER- TOTAL THAN IN BOT- IN TOM MA- BOTT TERIAL MATE (UG/KG) (UG/	0.
BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	0	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)	0	ENDO- SULFAN, ENI TOTAL TO IN BOT- IN TERIAL TERIAL TERIAL TE	0.	MIREX, THE TOTAL IN BOTH IN BOTH IN TOW MA- TOW MG- TERIAL ITERIAL ITE	0.
ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	11	CYANIDE TOTAL IN BOT- TOM MA- TERIAL (UG/G	58	DI- EP ELDRIN, SUI TOTAL IG IN BOT- IN TOM MA- TOM TERIAL IG (UG/KG) (UG	1.0	METHYL TRI- MI THION, IC TOT. IN IN BOTTOM TOM MATL. TT (UC/KG) (UC	0.
NITRO-GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG AS N)	7090	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G	53	DI- I AZINON, ELI TOTAL TC IN BOT- IN TOM MA- TOM TERLAL TE	0.	METHYL MI PARA- THION, TH TOT. IN TO MATT. NATT. (UG/KG) (UG/KG)	0.
NITRO-GEN, NH4 TOTAL IN BOT. MAT. (MG/KG	42	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)		DDT, AZ: TOTAL TK IN BOT- IN TOM MA- TOM TERLAL T	٥.	METH- MECONY- PACCHLOR, TI TOT. IN TO BOTTOM BE MATL. I	0.
SOLIDS, VOLA- TILE IN BOTTOM MA- TERIAL (MG/KG)	81500	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G	18	DDE, 1 TOTAL TI IN BOT- IN TOM MA- TOM TERIAL TI (UC/KG) (U	1.9	MALA- M THION, CJ TOTAL CI IN BOT- TO TOM MA- B TERIAL I (UG/KG) (U	0.
C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	46000	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G	•04	DDO, I TOTAL TK IN BOT- IN TOM MA- TOM TERLAL TI (UG/KG) (UK	8.9	LINDANE TI TOTAL TI IN BOT- IN TOM MA- TOO TERLAL TI (UG/KG) (U	0.
TIME	1230	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	480	I TO TO TO TO TO TO TO TO TO TO TO TO TO	10-24-79	LII TT TOT TOT TT TOT TOT TOT TOT TOT TOT	10-24-79
DATE	10-24-79	DATE	10-24-79	ь	10-2	L	10-2

0.004 35.0

0.008

0.016

0.062

0.125

0.25

2.00 1.00 0.50

DIAMETER (MM) 1230 % FINER BY WEIGHT

OCT , 1979 24... 15

TIME

DATE

BOTTOM MATERIAL PARTICLE SIZE

TABLE 15.--WATER-QUALITY DATA,, BARATARIA BAY

291512089551200 GULF OF MEXICO 300 YARDS WEST OF BARATARIA BAY WATERWAY, AT MILE -0.9, NEAR GRAND ISLE, LA

LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	0	CHLOR- DANE, . TOTAL, IN BOT- TOM MA- TERIAL (UG/KG)	o.	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UC/KG)	0,	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.
COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	0	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	o.	HEPTA- HE CHLOR, CH TOTAL EPO IN BOT- TOT TOTAL MA- BO TERIAL M (UG/KG) (UG	0.	TOXA- T PHENE, TH TOTAL TO TOM MA- TOM TERIAL TE	0.
CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	1 2	PCN, TOTAL, IN BOT- TOM MA- TERIAL (UG/KG)	0.	ETHION, CT TOTAL IT TO BOT- IN SOT- TOM MA- TOW TERLAL IT (UG/KG) (UC	0.	NE ITOM ERIL	90 .
CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G	<. 01	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0	ENDRIN, ETT TOTAL TI IN BOT- IN TOM MA- TO TERIAL T	0.	PARA- THION, PER- TOTAL THAI IN BOT- IN TOM MA- BOT TERIAL MATI (UG/KG) (UG	0.
BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	0	GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)	0	ENDO- SULFAN, EN TOTAL I IN BOT- IN TERIAL I (UG/KG) (U	0.	MIREX, T TOTAL TIN BOT- IN TOM MA- TO TERIAL T	0.
- ARSENIC TOTAL IN BOT- TOM MA- TERIAL 3 (UG/G AS AS)	ю	CYANIDE TOTAL TOTAL TOTAL TOM MA- TOM	0	DI- I ELDRIN, ST TOTAL 1 IN BOT- IP TOM MA- TC TERIAL 1 (UG/KG) ((0.	METHYL TRI- THION, TOT. IN IN BOITOM TO MATL. (UG/KG) ((0.
- NITRO- 4 GEN, NH4 + OFG. TOT IN BOT MAT (MS/KG AS N)	820	ZINC, RECOV. FM BOT- TOM MA- TERIAL L (UG/G) AS ZN)	0 10	DI- AZINON, E TOTAL IN BOT- IN BOT- TOM MA- TERIAL (UG/KG) ((0.	METHYL 1 PARA- THION, TOT. IN THOTON IN THO IN THE IN	٥.
GEN, NHTRO-GEN, NH4 N TOTAL IN BOT. MAT. L (MG/KG) AS N)	0 2.8	SELE- NIUM, - TOTAL - IN BOT- L TOM MA- TERIAL (UG/G)	2	DDT, A TOTAL IN BOT- I TOM MA- T TERIAL (UG/KG) (0.	METH- M OXY- CHLOR, TOT. IN T BOTTOM MATL. (UG/KG) (٥.
SOLIDS, VOLA- TILE IN BOTIOM MA- TERIAL (MG/KG)	0 10000	Y NICKEL, RECOV EM BOT TOM MA- I TERIAL (UG/G) AS NI)		DDE, TOTAL TOTAL IOM MA- TERIAL (UG/KG) (0.	MALA- THION, TOTAL TOTAL TOM MA- TERIAL (UG/KG) (0.
C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	2900	RECON. RECON. TOM MA- TOM MA- TERIAL TERIAL (UG/G) AS HG)	00.	DDD, TOTAL IN BOT- I TOM MA- T TERIAL (UG/KG) (0.	LINDANE TOTAL IN BOT- I TOM MA- T TERIAL (UG/KG) (0.
TIME) 1230	MANGA- NEE, RECOV. EM BOT- TOM MA- TERIAL (UG/G)	001 6	I T DATE (10-18-79	I I T T	10-18-79
DATE	10-18-79	DATE	10-18-79		10.		10

0.001

0.004 0.002

0.008

0.062 0.031 0.016 2.0 -- --

0.125 40.0

2.00 1.00 0.50 0.25 -- -- 99.5 96.0

CCT , 1979 DIAMETER (NM)
18... 1230 % FINER BY WEIGHT

TIME

DATE

BOTTOM MATERIAL PARTICLE SIZE

TABLE 16.--WATER-QUALITY DATA, EUGENE ISLAND, ATCHAFALAYA BAY

292119091235300 GULF OF MEXICO IN ATCHAFALAYA BAY, 1.5 MILES SOUTHWEST OF EUGUENE ISLAND, LA

LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G	Ω	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATT. (UG/KG)	0.	TRI- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.
COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	m	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.		0.		0.
	m	PCN, AI TOTAL TOTAL TIN BOT- IN TOM MA- TO TERIAL TOWNS (UG/WG) (UG/WG) (UG/WG)	•	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	•	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	·
M CHRO- MIUM, PERSON, THE BOT- L TOM MA- TERIAL (UG/G)	_		æ	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.	PER- THANE IN BOTTOM MATERIL (UG/KG)	00.
CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G	.10	PCB, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		ENDRIN, E TOTAL IN BOT- I TOM MA- TERIAL (UG/KG) (0.	PARA- THION, F TOTAL 1 IN BOT- 1 TOM MA- TERIAL M	0.
BERYL- LIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	0	OIL AND GREASE, TOT. IN BOT MAT GRAVI- METRIC (MG/KG)	0		0.		0.
ARSENIC TOTAL IN BOT- TOM MA- TERIAL T (UG/G AS AS)	9	CYANIDE O TOTAL G IN BOT- T TOM MA- B TERIAL (UG/G	0	ENDO- SULFAN, TOTAL IN BOT- TOM MA- TERIAL		MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
			17	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.	METHYL TRI- THION, TOT. IN BOTION MATL,	0.
NITRO-GEN, NH4 + ORG. TOT IN BOT MAT (MG/KG	1710	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G		DI- AZINON, H TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.	METHYL PARA- THION, TOT. IN BOTTOM MATL. (UG/KG)	o.
NITRO-GEN, NH4 TOTAL IN BOT. MAT. (MG/KG	3.4	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	0		0.		0.
SOLIDS, VOLA- C TILLE IN BOTTOM 1 MA- TERIAL (MG/KG)	2000	NICKEL, RECOV. FM BOT- TOM MA- TERLAL 7 (UG/G	10	DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		METH-OXY-CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	
	8100		.01	DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	0.	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL	0.
C.O.D. TOTAL IN BOTTOM MA- TERIAL (MG/KG)	81	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G		DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	4.	LINDANE TOTAL IN BOT- TOM MA- TERIAL	o.
TIME	1000	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	150	T TO	-79		-79
DATE	10-25-79	DATE	10-25-79	DA	10-25-79	DATE	10-25-79

0.002 0.004 0.008 0.016 BOTTOM MATERIAL PARTICLE SIZE 0.031 0.062 16.5 0.125 0.25 0.50 1.00 2.00 DIAMETER (MM) 1000 % FINER BY WEIGHT TIME OCT , 1979 25... 10 DATE

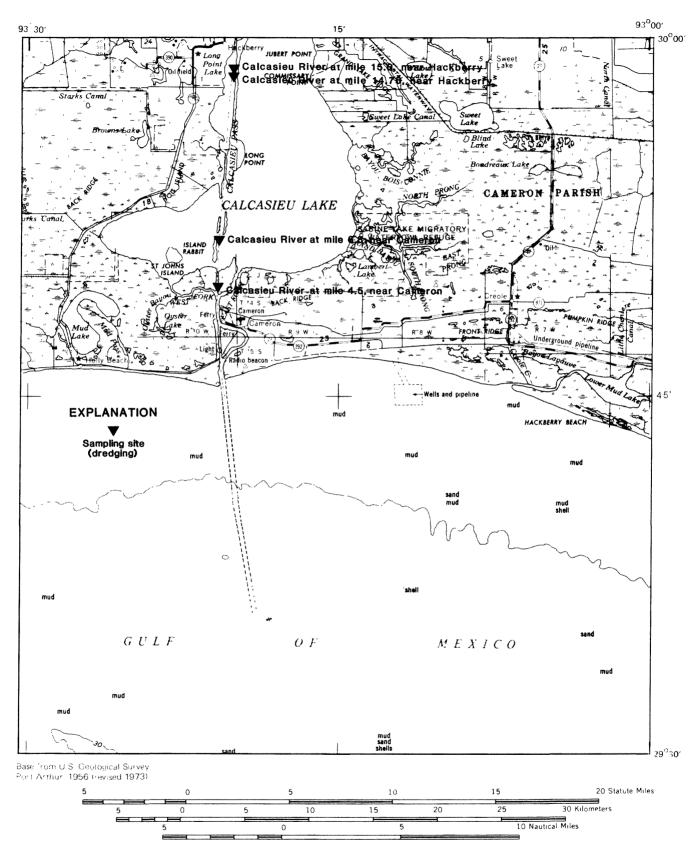
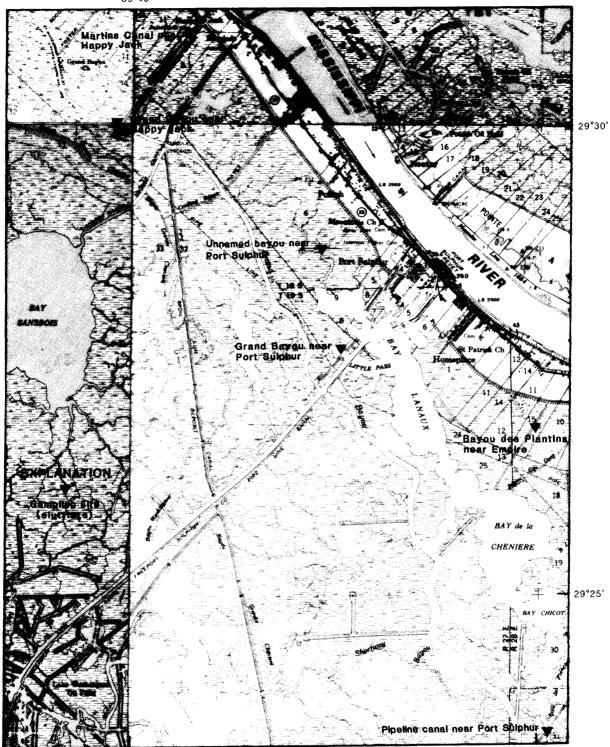



PLATE 2. MAP SHOWING LOCATION OF SAMPLING SITES ALONG THE LOWER CALCASIEU RIVER, LOUISIANA.

89°40' 89°45'

Base from U.S. Geological Survey Black Bay, 1964; Empire, 1960; Fort Livingston, 1961; and Pointe a la Hache, 1962

PLATE 3. MAP SHOWING LOCATION OF SAMPLING SITES FOR NEW ORLEANS TO VENICE HURRICANE PROTECTION PROJECT, LOUISIANA.

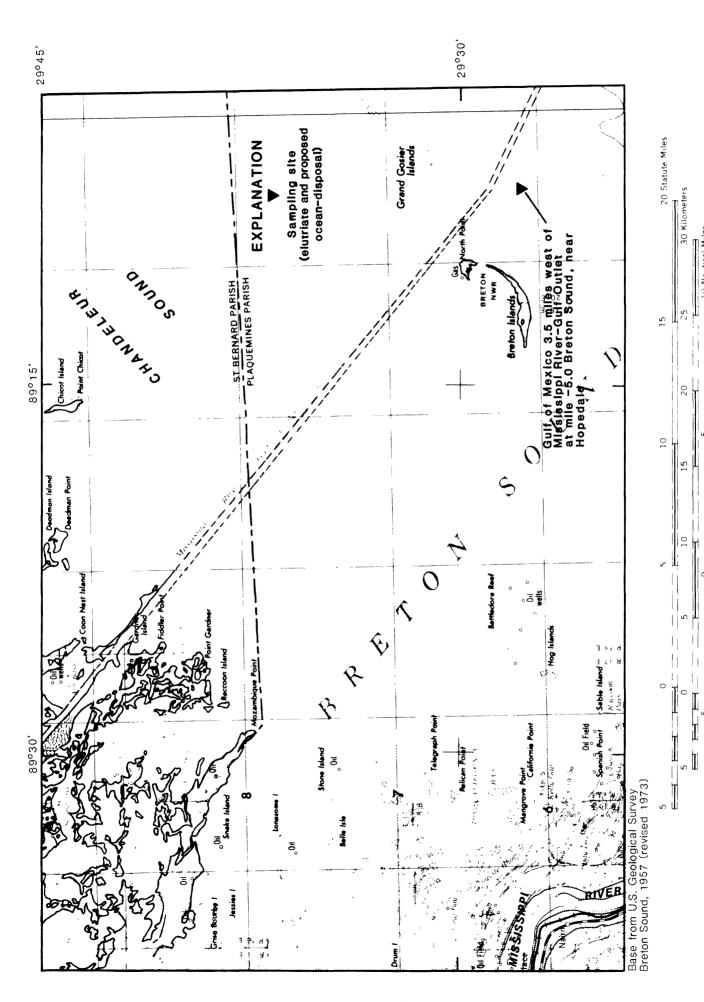


PLATE 4. MAP SHOWING LOCATION OF SAMPLING SITES, MISSISSIPPI RIVER-GULF OUTLET, LOUISIANA.

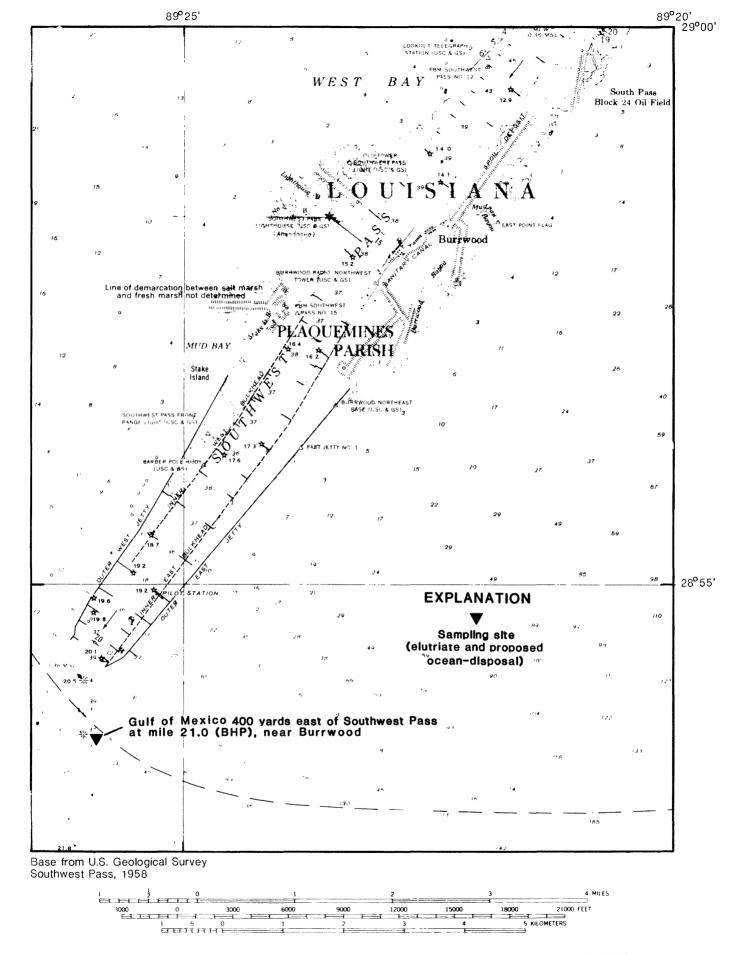


PLATE 5. MAP SHOWING LOCATION OF SAMPLING SITES, SOUTHWEST PASS, LOUISIANA.

	-	

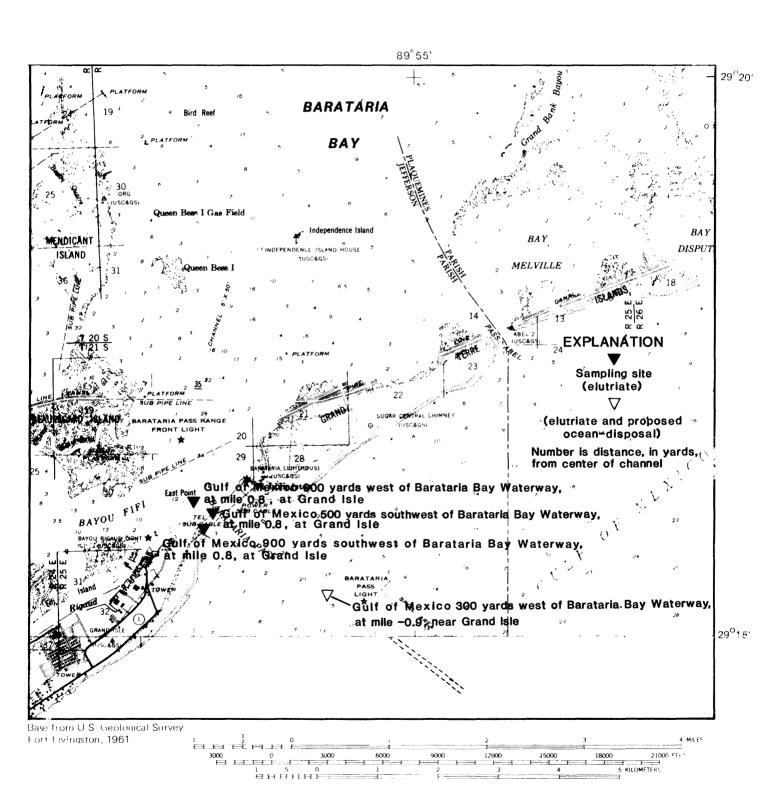


PLATE 6. MAP SHOWING LOCATION OF SAMPLING SITES, BARATARIA BAY WATERWAY, GULF SECTION, LOUISIANA.

	,	,	
		•	

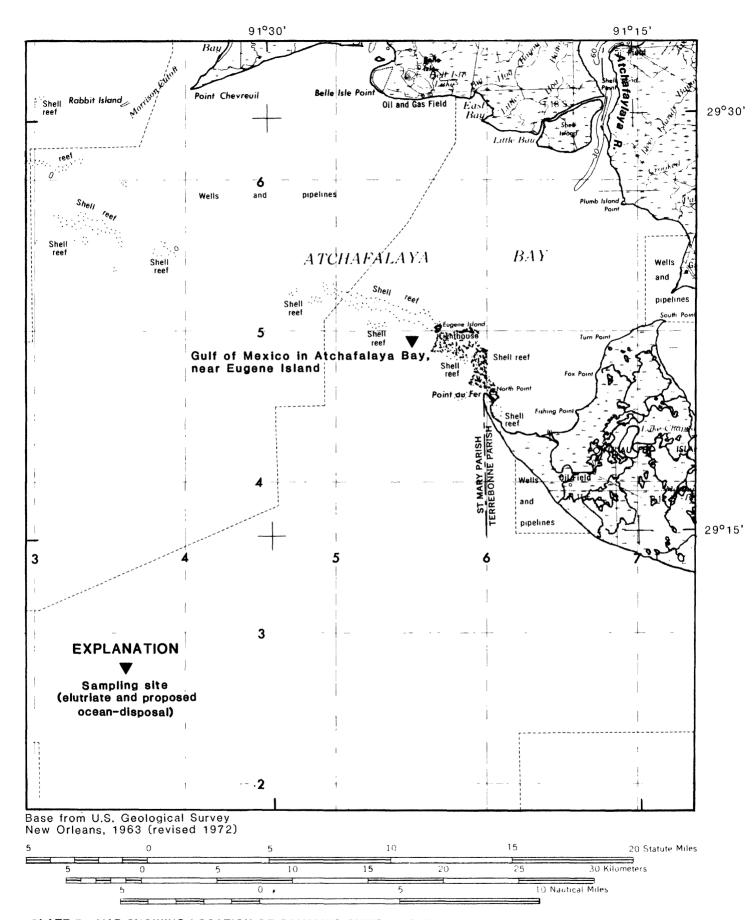


PLATE 7. MAP SHOWING LOCATION OF SAMPLING SITES, EUGENE ISLAND, ATCHAFALAYA BAY AREA, LOUISIANA.

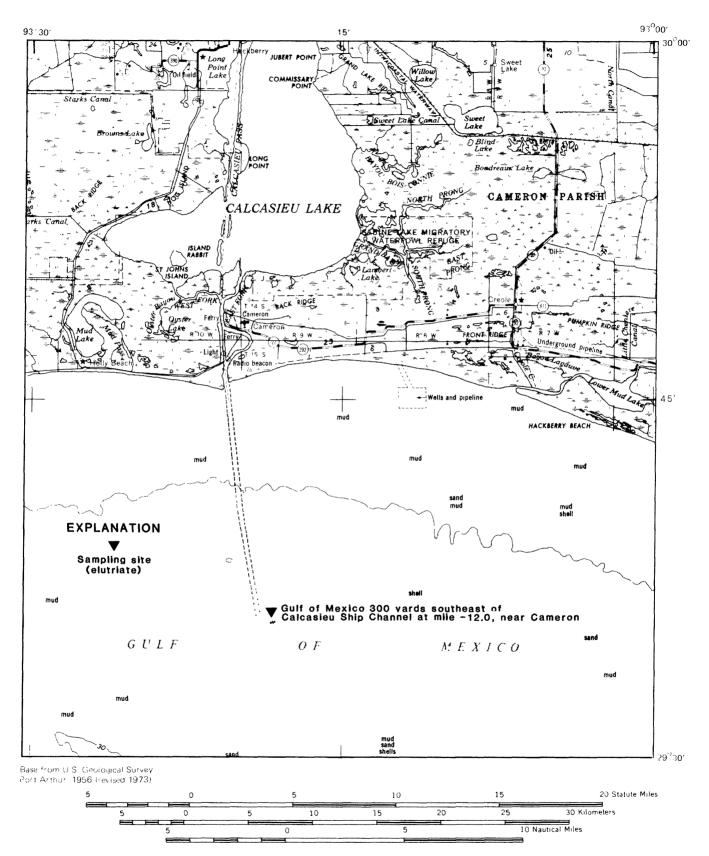


PLATE 8. MAP SHOWING LOCATION OF SAMPLING SITE, CALCASIEU SHIP CHANNEL, GULF SECTION, LOUISIANA.

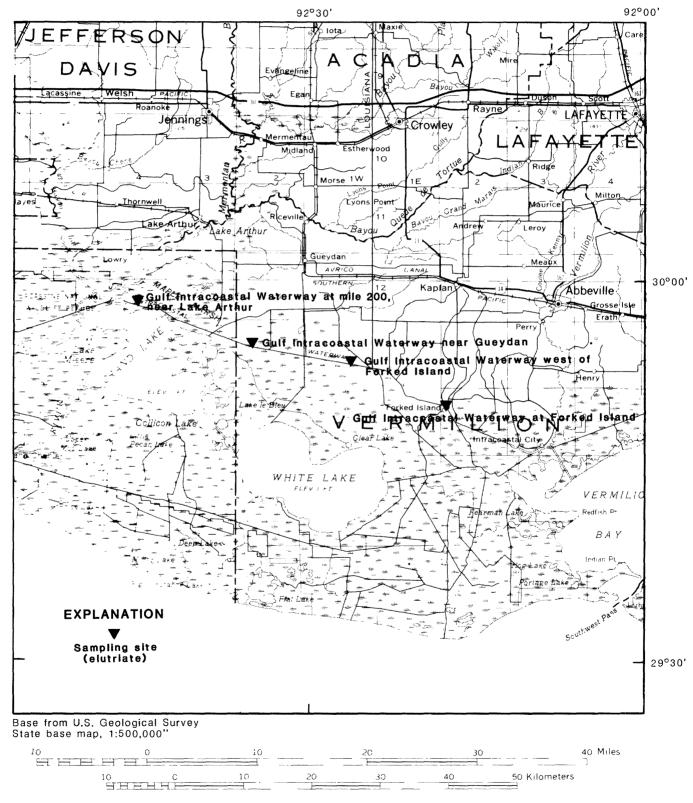


PLATE 10. MAP SHOWING LOCATION OF SAMPLING SITES, GULF INTRACOASTAL WATERWAY, LOUISIANA.

			,
		·	
		•	

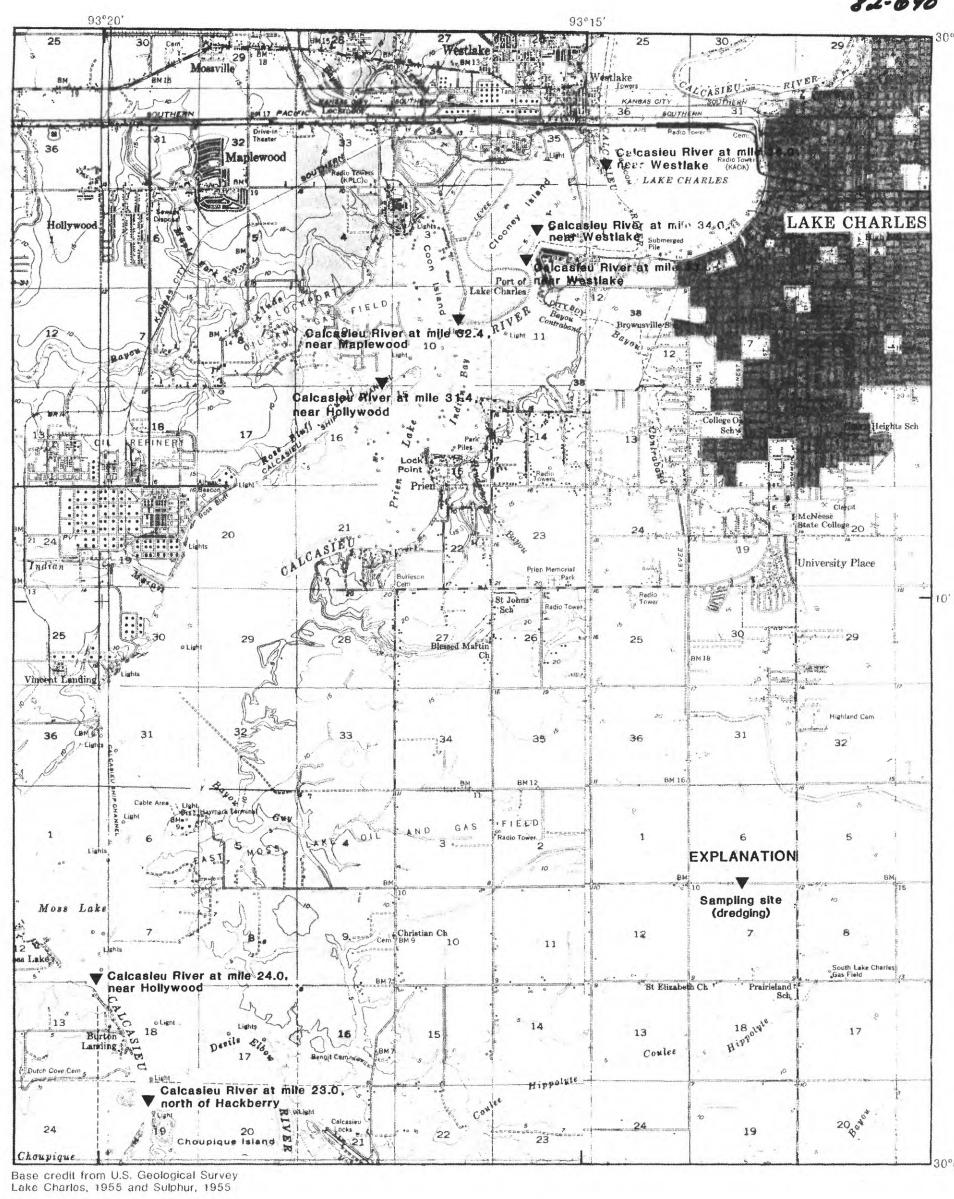


PLATE 1. MAP SHOWING LOCATION OF SAMPLING SITES ALONG THE UPPER CALCASIEU RIVER, LOUISIANA.

ENLIST OF EXTER

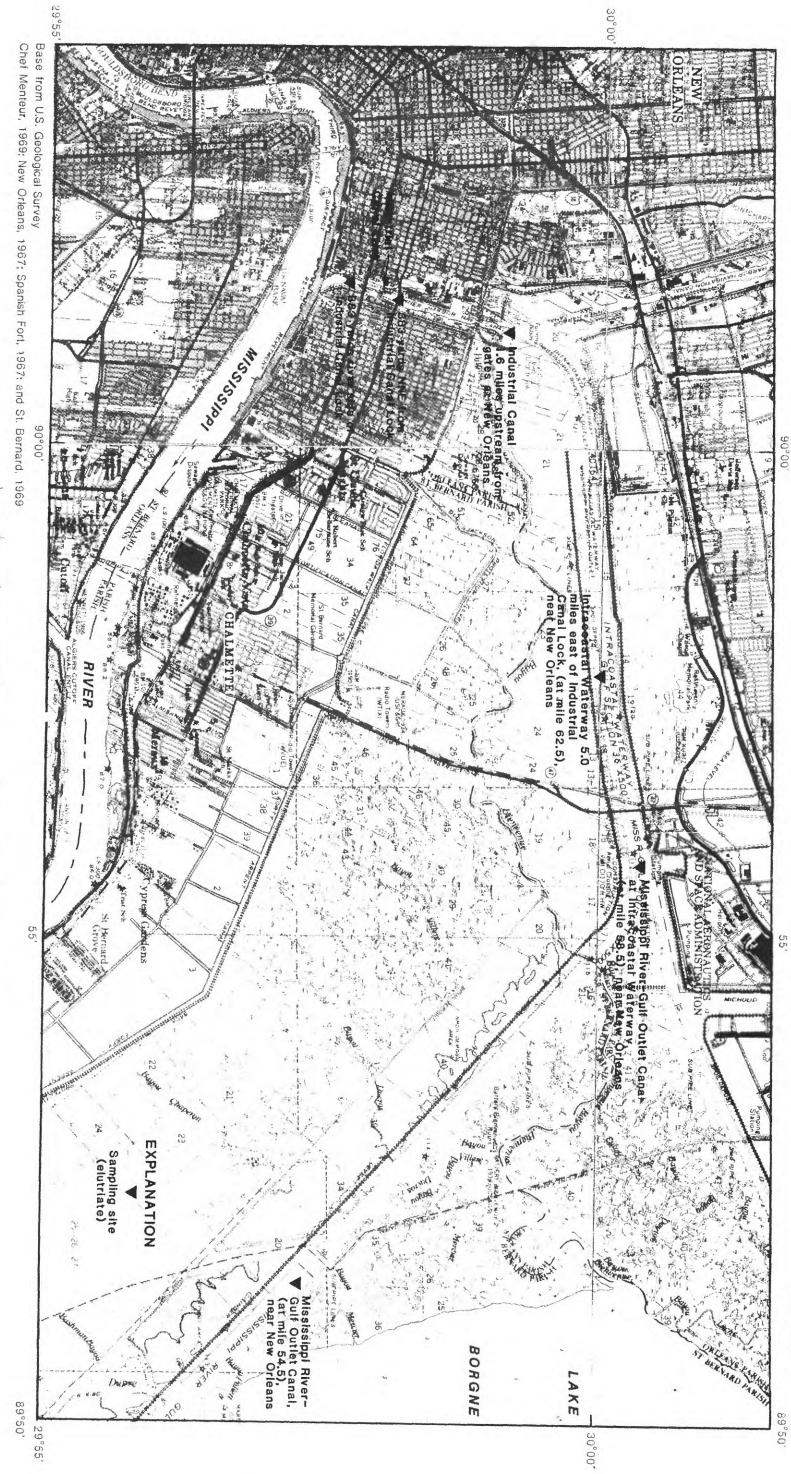


PLATE 9. MAP SHOWING LOCATION OF SAMPLING SITES, INNER HARBOR NAVIGATION CANAL AND MISSISSIPPI RIVER-GULF OUTLET. NEW ORLEANS AREA, LOUISIANA.